{"title":"UBE2D1 通过调节 p21 泛素化促进胶质母细胞瘤增殖。","authors":"Yongfeng Wang, Qianquan Ma, Haoyu Li, Wei Huang, Jia You, Dian Liu","doi":"10.1002/mc.23786","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) cells exhibit aberrant proliferative abilities and resistance to conventional therapies. However, the mechanisms underlying these malignant phenotypes are poorly understood. In this study, we identified ubiquitin-conjugating enzyme E2D1 (UBE2D1) as a crucial stimulator of GBM development. It is highly expressed in GBM and closely associated with poor prognosis in patients with GBM. UBE2D1 knockdown inhibits GBM cell growth and leads to G1 cell cycle arrest. Mechanistically, UBCH5A binds to p21 at the protein level and induces the ubiquitination and degradation of p21. This negative regulation is mediated by STUB1. Our findings are the first to identify UBE2D1 as a key driver of GBM growth and provide a potential target for improving prognosis and therapy.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1967-1979"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UBE2D1 promotes glioblastoma proliferation by modulating p21 ubiquitination.\",\"authors\":\"Yongfeng Wang, Qianquan Ma, Haoyu Li, Wei Huang, Jia You, Dian Liu\",\"doi\":\"10.1002/mc.23786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GBM) cells exhibit aberrant proliferative abilities and resistance to conventional therapies. However, the mechanisms underlying these malignant phenotypes are poorly understood. In this study, we identified ubiquitin-conjugating enzyme E2D1 (UBE2D1) as a crucial stimulator of GBM development. It is highly expressed in GBM and closely associated with poor prognosis in patients with GBM. UBE2D1 knockdown inhibits GBM cell growth and leads to G1 cell cycle arrest. Mechanistically, UBCH5A binds to p21 at the protein level and induces the ubiquitination and degradation of p21. This negative regulation is mediated by STUB1. Our findings are the first to identify UBE2D1 as a key driver of GBM growth and provide a potential target for improving prognosis and therapy.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"1967-1979\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23786\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23786","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
UBE2D1 promotes glioblastoma proliferation by modulating p21 ubiquitination.
Glioblastoma (GBM) cells exhibit aberrant proliferative abilities and resistance to conventional therapies. However, the mechanisms underlying these malignant phenotypes are poorly understood. In this study, we identified ubiquitin-conjugating enzyme E2D1 (UBE2D1) as a crucial stimulator of GBM development. It is highly expressed in GBM and closely associated with poor prognosis in patients with GBM. UBE2D1 knockdown inhibits GBM cell growth and leads to G1 cell cycle arrest. Mechanistically, UBCH5A binds to p21 at the protein level and induces the ubiquitination and degradation of p21. This negative regulation is mediated by STUB1. Our findings are the first to identify UBE2D1 as a key driver of GBM growth and provide a potential target for improving prognosis and therapy.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.