Hanna Molin, Christoffer Wärff, Erik Lindblom, Magnus Arnell, Bengt Carlsson, Per Mattsson, Jonas Bäckman, Ulf Jeppsson
{"title":"数字孪生应用的自动数据传输:两个案例研究。","authors":"Hanna Molin, Christoffer Wärff, Erik Lindblom, Magnus Arnell, Bengt Carlsson, Per Mattsson, Jonas Bäckman, Ulf Jeppsson","doi":"10.1002/wer.11074","DOIUrl":null,"url":null,"abstract":"<p><p>Digital twins have been gaining an immense interest in various fields over the last decade. Bringing conventional process simulation models into (near) real time are thought to provide valuable insights for operators, decision makers, and stakeholders in many industries. The objective of this paper is to describe two methods for implementing digital twins at water resource recovery facilities and highlight and discuss their differences and preferable use situations, with focus on the automated data transfer from the real process. Case 1 uses a tailor-made infrastructure for automated data transfer between the facility and the digital twin. Case 2 uses edge computing for rapid automated data transfer. The data transfer lag from process to digital twin is low compared to the simulation frequency in both systems. The presented digital twin objectives can be achieved using either of the presented methods. The method of Case 1 is better suited for automatic recalibration of model parameters, although workarounds exist for the method in Case 2. The method of Case 2 is well suited for objectives such as soft sensors due to its integration with the SCADA system and low latency. The objective of the digital twin, and the required latency of the system, should guide the choice of method. PRACTITIONER POINTS: Various methods can be used for automated data transfer between the physical system and a digital twin. Delays in the data transfer differ depending on implementation method. The digital twin objective determines the required simulation frequency. Implementation method should be chosen based on the required simulation frequency.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 7","pages":"e11074"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated data transfer for digital twin applications: Two case studies.\",\"authors\":\"Hanna Molin, Christoffer Wärff, Erik Lindblom, Magnus Arnell, Bengt Carlsson, Per Mattsson, Jonas Bäckman, Ulf Jeppsson\",\"doi\":\"10.1002/wer.11074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digital twins have been gaining an immense interest in various fields over the last decade. Bringing conventional process simulation models into (near) real time are thought to provide valuable insights for operators, decision makers, and stakeholders in many industries. The objective of this paper is to describe two methods for implementing digital twins at water resource recovery facilities and highlight and discuss their differences and preferable use situations, with focus on the automated data transfer from the real process. Case 1 uses a tailor-made infrastructure for automated data transfer between the facility and the digital twin. Case 2 uses edge computing for rapid automated data transfer. The data transfer lag from process to digital twin is low compared to the simulation frequency in both systems. The presented digital twin objectives can be achieved using either of the presented methods. The method of Case 1 is better suited for automatic recalibration of model parameters, although workarounds exist for the method in Case 2. The method of Case 2 is well suited for objectives such as soft sensors due to its integration with the SCADA system and low latency. The objective of the digital twin, and the required latency of the system, should guide the choice of method. PRACTITIONER POINTS: Various methods can be used for automated data transfer between the physical system and a digital twin. Delays in the data transfer differ depending on implementation method. The digital twin objective determines the required simulation frequency. Implementation method should be chosen based on the required simulation frequency.</p>\",\"PeriodicalId\":23621,\"journal\":{\"name\":\"Water Environment Research\",\"volume\":\"96 7\",\"pages\":\"e11074\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/wer.11074\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11074","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Automated data transfer for digital twin applications: Two case studies.
Digital twins have been gaining an immense interest in various fields over the last decade. Bringing conventional process simulation models into (near) real time are thought to provide valuable insights for operators, decision makers, and stakeholders in many industries. The objective of this paper is to describe two methods for implementing digital twins at water resource recovery facilities and highlight and discuss their differences and preferable use situations, with focus on the automated data transfer from the real process. Case 1 uses a tailor-made infrastructure for automated data transfer between the facility and the digital twin. Case 2 uses edge computing for rapid automated data transfer. The data transfer lag from process to digital twin is low compared to the simulation frequency in both systems. The presented digital twin objectives can be achieved using either of the presented methods. The method of Case 1 is better suited for automatic recalibration of model parameters, although workarounds exist for the method in Case 2. The method of Case 2 is well suited for objectives such as soft sensors due to its integration with the SCADA system and low latency. The objective of the digital twin, and the required latency of the system, should guide the choice of method. PRACTITIONER POINTS: Various methods can be used for automated data transfer between the physical system and a digital twin. Delays in the data transfer differ depending on implementation method. The digital twin objective determines the required simulation frequency. Implementation method should be chosen based on the required simulation frequency.
期刊介绍:
Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.