用于加压断裂相场建模的平滑点插值法

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Analysis with Boundary Elements Pub Date : 2024-07-16 DOI:10.1016/j.enganabound.2024.105869
{"title":"用于加压断裂相场建模的平滑点插值法","authors":"","doi":"10.1016/j.enganabound.2024.105869","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of hydraulic fracturing is of great relevance to various areas and is characterised by the occurrence of complex crack patterns with bifurcations and branches. For this reason, an interesting approach is the modelling of hydraulic fracture using a phase-field model. In addition to the discretisation using the Finite Element Method (FEM), some works have already explored the discretisation of the phase-field model with meshfree methods, including the Smoothed Point Interpolation Methods (SPIM) family. Seeking to take advantage of the good convergence results of SPIM for phase-field modelling of brittle fractures, this paper proposes the use of SPIM for phase-field modelling of pressurised fractures. In order to limit the computational cost, a prescribed SPIM-FEM coupling is employed, with the purpose of concentrating the meshless discretisation only in the regions of expected crack propagation. The model is characterised by a constant internal pressure load along the fracture that is applied indirectly from the formulation of the phase-field model. A series of numerical simulations is presented. The aim is to evaluate the proposed model, verify the results and point out characteristics of the phase-field model with internal pressure.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothed point interpolation methods for phase-field modelling of pressurised fracture\",\"authors\":\"\",\"doi\":\"10.1016/j.enganabound.2024.105869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The problem of hydraulic fracturing is of great relevance to various areas and is characterised by the occurrence of complex crack patterns with bifurcations and branches. For this reason, an interesting approach is the modelling of hydraulic fracture using a phase-field model. In addition to the discretisation using the Finite Element Method (FEM), some works have already explored the discretisation of the phase-field model with meshfree methods, including the Smoothed Point Interpolation Methods (SPIM) family. Seeking to take advantage of the good convergence results of SPIM for phase-field modelling of brittle fractures, this paper proposes the use of SPIM for phase-field modelling of pressurised fractures. In order to limit the computational cost, a prescribed SPIM-FEM coupling is employed, with the purpose of concentrating the meshless discretisation only in the regions of expected crack propagation. The model is characterised by a constant internal pressure load along the fracture that is applied indirectly from the formulation of the phase-field model. A series of numerical simulations is presented. The aim is to evaluate the proposed model, verify the results and point out characteristics of the phase-field model with internal pressure.</p></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724003448\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724003448","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水力压裂问题与各个领域息息相关,其特点是出现带有分叉和分支的复杂裂缝模式。因此,一种有趣的方法是使用相场模型对水力压裂进行建模。除了使用有限元法(FEM)进行离散化之外,一些研究还探索了使用无网格方法(包括平滑点插值法(SPIM)系列)对相场模型进行离散化。为了利用 SPIM 在脆性断裂相场建模中的良好收敛结果,本文提出将 SPIM 用于加压断裂的相场建模。为了限制计算成本,采用了规定的 SPIM-FEM 耦合,目的是将无网格离散化仅集中在预期裂纹扩展的区域。该模型的特点是沿裂缝施加恒定的内部压力载荷,该载荷通过相场模型的公式间接施加。本文介绍了一系列数值模拟。目的是评估所提出的模型、验证结果并指出带有内压的相场模型的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smoothed point interpolation methods for phase-field modelling of pressurised fracture

The problem of hydraulic fracturing is of great relevance to various areas and is characterised by the occurrence of complex crack patterns with bifurcations and branches. For this reason, an interesting approach is the modelling of hydraulic fracture using a phase-field model. In addition to the discretisation using the Finite Element Method (FEM), some works have already explored the discretisation of the phase-field model with meshfree methods, including the Smoothed Point Interpolation Methods (SPIM) family. Seeking to take advantage of the good convergence results of SPIM for phase-field modelling of brittle fractures, this paper proposes the use of SPIM for phase-field modelling of pressurised fractures. In order to limit the computational cost, a prescribed SPIM-FEM coupling is employed, with the purpose of concentrating the meshless discretisation only in the regions of expected crack propagation. The model is characterised by a constant internal pressure load along the fracture that is applied indirectly from the formulation of the phase-field model. A series of numerical simulations is presented. The aim is to evaluate the proposed model, verify the results and point out characteristics of the phase-field model with internal pressure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
期刊最新文献
A TOUGH-FEMM based cryogenic THM coupled model and its application to cold-region tunnels AttenEpilepsy: A 2D convolutional network model based on multi-head self-attention A novel direct interpolation boundary element method formulation for solving diffusive–advective problems Numerical modeling and failure analysis of steel fiber-reinforced concrete beams in a reformulated mesoscopic peridynamic model Self-propulsion performance prediction in calm water based on RANS/TEBEM coupling method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1