生物人工瓣叶各向异性对经导管主动脉瓣置换装置支架动力学的影响

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-07-08 DOI:10.1016/j.jmbbm.2024.106650
{"title":"生物人工瓣叶各向异性对经导管主动脉瓣置换装置支架动力学的影响","authors":"","doi":"10.1016/j.jmbbm.2024.106650","DOIUrl":null,"url":null,"abstract":"<div><p>The assessment of stent fatigue in Transcatheter Aortic Valve Replacement (TAVR) systems is critical for the design of next-generation devices, both <em>in vitro</em> and <em>in vivo</em>. The mechanical properties of the bioprosthetic heart valves (BHVs) have a significant impact on the fatigue life of the metallic stent and thus must be taken into consideration when evaluating new TAVR device designs. This study aims to investigate the relationship between BHV anisotropic behaviour and the asymmetric deflections of the stent frame observed during <em>in vitro</em> testing.</p><p>An explicit dynamics finite element model of the nitinol stent with attached bioprosthetic valve leaflets was developed to evaluate the deflections of the TAVR device under haemodynamic loading. Our results demonstrate that pericardium behaviour plays a dominant role in determining stent frame deflection. The anisotropic behaviour of the leaflets, resulting from collagen fibre orientation, affects the extent of deflection encountered by each commissure of the frame. This leads to asymmetric variation in frame deflection that can influence the overall fatigue life of the nitinol stent. This study highlights the importance of considering both the flexible nature of the metallic stent as well as the leaflet anisotropic behaviour in the design and fatigue assessment of TAVR systems.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751616124002820/pdfft?md5=a063a054119988e3fd73ee974963081e&pid=1-s2.0-S1751616124002820-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of bioprosthetic leaflet anisotropy on stent dynamics of Transcatheter Aortic Valve Replacement devices\",\"authors\":\"\",\"doi\":\"10.1016/j.jmbbm.2024.106650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The assessment of stent fatigue in Transcatheter Aortic Valve Replacement (TAVR) systems is critical for the design of next-generation devices, both <em>in vitro</em> and <em>in vivo</em>. The mechanical properties of the bioprosthetic heart valves (BHVs) have a significant impact on the fatigue life of the metallic stent and thus must be taken into consideration when evaluating new TAVR device designs. This study aims to investigate the relationship between BHV anisotropic behaviour and the asymmetric deflections of the stent frame observed during <em>in vitro</em> testing.</p><p>An explicit dynamics finite element model of the nitinol stent with attached bioprosthetic valve leaflets was developed to evaluate the deflections of the TAVR device under haemodynamic loading. Our results demonstrate that pericardium behaviour plays a dominant role in determining stent frame deflection. The anisotropic behaviour of the leaflets, resulting from collagen fibre orientation, affects the extent of deflection encountered by each commissure of the frame. This leads to asymmetric variation in frame deflection that can influence the overall fatigue life of the nitinol stent. This study highlights the importance of considering both the flexible nature of the metallic stent as well as the leaflet anisotropic behaviour in the design and fatigue assessment of TAVR systems.</p></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1751616124002820/pdfft?md5=a063a054119988e3fd73ee974963081e&pid=1-s2.0-S1751616124002820-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124002820\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124002820","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

经导管主动脉瓣置换术(TAVR)系统中支架疲劳的评估对于下一代设备的体外和体内设计都至关重要。生物人工心脏瓣膜(BHV)的机械性能对金属支架的疲劳寿命有重大影响,因此在评估新的 TAVR 装置设计时必须加以考虑。本研究旨在研究 BHV 各向异性行为与体外测试中观察到的支架框架不对称挠度之间的关系。我们建立了一个附有生物人工瓣叶的镍钛诺支架显式动力学有限元模型,以评估 TAVR 装置在血流动力学负荷下的挠度。我们的结果表明,心包行为在决定支架框架挠度方面起着主导作用。胶原纤维取向导致的小叶各向异性会影响支架框架每个合点的挠度。这会导致支架挠度的不对称变化,从而影响镍钛诺支架的整体疲劳寿命。这项研究强调了在 TAVR 系统的设计和疲劳评估中同时考虑金属支架的柔韧性和瓣叶各向异性行为的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of bioprosthetic leaflet anisotropy on stent dynamics of Transcatheter Aortic Valve Replacement devices

The assessment of stent fatigue in Transcatheter Aortic Valve Replacement (TAVR) systems is critical for the design of next-generation devices, both in vitro and in vivo. The mechanical properties of the bioprosthetic heart valves (BHVs) have a significant impact on the fatigue life of the metallic stent and thus must be taken into consideration when evaluating new TAVR device designs. This study aims to investigate the relationship between BHV anisotropic behaviour and the asymmetric deflections of the stent frame observed during in vitro testing.

An explicit dynamics finite element model of the nitinol stent with attached bioprosthetic valve leaflets was developed to evaluate the deflections of the TAVR device under haemodynamic loading. Our results demonstrate that pericardium behaviour plays a dominant role in determining stent frame deflection. The anisotropic behaviour of the leaflets, resulting from collagen fibre orientation, affects the extent of deflection encountered by each commissure of the frame. This leads to asymmetric variation in frame deflection that can influence the overall fatigue life of the nitinol stent. This study highlights the importance of considering both the flexible nature of the metallic stent as well as the leaflet anisotropic behaviour in the design and fatigue assessment of TAVR systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
One-step synthesis of a piezoelectric hybrid BNNT/BaTiO3 composite and its application in bone tissue engineering Validation of finite-element-simulated orthodontic forces produced by thermoplastic aligners: Effect of aligner geometry and creep The influence of lumbar vertebra and cage related factors on cage-endplate contact after lumbar interbody fusion: An in-vitro experimental study A benchmark of muscle models to length changes great and small Designs and mechanical responses of 3D-printed Ti6Al4V porous structures based on triply periodic minimal surfaces with different iso-values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1