Changyang Li, Zhong Peng, Ying Zhao, Dan Fang, Xianjin Chen, Fan Xu, Xianye Wang
{"title":"盐沼植被阻力系数的季节性变化","authors":"Changyang Li, Zhong Peng, Ying Zhao, Dan Fang, Xianjin Chen, Fan Xu, Xianye Wang","doi":"10.1016/j.coastaleng.2024.104575","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the seasonal variations of vegetation drag coefficients is crucial for improving wave attenuation predictions and adapting to climate impacts. This study explores the seasonal changes in drag coefficients within salt marsh vegetation, using data from a year-long series of field measurements at the Chongming Dongtan Wetland. It uncovers the complex seasonal variations of drag coefficients. Results demonstrate that incorporating a nonlinear equation for characteristic flow velocity and effective vegetation length significantly improves the precision of drag coefficient predictions, ensuring a closer match with field observations. Furthermore, it introduces a refined drag coefficient formula that incorporates adjustments for vegetation stiffness and relative submergence, offering a more accurate representation of the seasonal variability in drag forces exerted by salt marsh vegetation. This enhanced formula is crucial for accurately assessing vegetation's role in wave attenuation, providing critical insights for the design and implementation of coastal defense and wetland conservation initiatives.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"193 ","pages":"Article 104575"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal variations in drag coefficient of salt marsh vegetation\",\"authors\":\"Changyang Li, Zhong Peng, Ying Zhao, Dan Fang, Xianjin Chen, Fan Xu, Xianye Wang\",\"doi\":\"10.1016/j.coastaleng.2024.104575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the seasonal variations of vegetation drag coefficients is crucial for improving wave attenuation predictions and adapting to climate impacts. This study explores the seasonal changes in drag coefficients within salt marsh vegetation, using data from a year-long series of field measurements at the Chongming Dongtan Wetland. It uncovers the complex seasonal variations of drag coefficients. Results demonstrate that incorporating a nonlinear equation for characteristic flow velocity and effective vegetation length significantly improves the precision of drag coefficient predictions, ensuring a closer match with field observations. Furthermore, it introduces a refined drag coefficient formula that incorporates adjustments for vegetation stiffness and relative submergence, offering a more accurate representation of the seasonal variability in drag forces exerted by salt marsh vegetation. This enhanced formula is crucial for accurately assessing vegetation's role in wave attenuation, providing critical insights for the design and implementation of coastal defense and wetland conservation initiatives.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"193 \",\"pages\":\"Article 104575\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001236\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001236","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Seasonal variations in drag coefficient of salt marsh vegetation
Understanding the seasonal variations of vegetation drag coefficients is crucial for improving wave attenuation predictions and adapting to climate impacts. This study explores the seasonal changes in drag coefficients within salt marsh vegetation, using data from a year-long series of field measurements at the Chongming Dongtan Wetland. It uncovers the complex seasonal variations of drag coefficients. Results demonstrate that incorporating a nonlinear equation for characteristic flow velocity and effective vegetation length significantly improves the precision of drag coefficient predictions, ensuring a closer match with field observations. Furthermore, it introduces a refined drag coefficient formula that incorporates adjustments for vegetation stiffness and relative submergence, offering a more accurate representation of the seasonal variability in drag forces exerted by salt marsh vegetation. This enhanced formula is crucial for accurately assessing vegetation's role in wave attenuation, providing critical insights for the design and implementation of coastal defense and wetland conservation initiatives.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.