{"title":"双原子二聚体中的不对称双金属杂化引发硝酸盐到氨的电化学降解的自旋转变","authors":"","doi":"10.1016/j.susc.2024.122549","DOIUrl":null,"url":null,"abstract":"<div><p>The dual-atom dimer with half-filled 3d orbital demonstrates a great advantage in electrochemical degradation from nitrate to ammonia, because their binding interaction and electron transfer between reactants and active sites are spin-dependent. Herein, we suggest a local structure distortion caused by a bimetallic hybridization to regulate the spin configuration from low to high by implanting one Fe atom into the Mn/Mn dimer on holey nitrogen-doped graphene, which makes the Mn magnetic moment increase to 3.31 μ<sub>B</sub> from 0.48 μ<sub>B</sub>. Meanwhile, the activation energy of the formed *NOH at rate-limiting step can be decreased to 0.79 eV, which is obviously lower than the pristine Fe/Fe (1.38 eV) and Mn/Mn (1.12 eV) dimers. These findings enlighten an intriguing strategy to enhance the reactive activity of dual-atom catalysts by regulating their spin configuration.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric dual-metal-hybridization in dual-atom dimers trigger a spin transition for electrochemical degradation from nitrate to ammonia\",\"authors\":\"\",\"doi\":\"10.1016/j.susc.2024.122549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dual-atom dimer with half-filled 3d orbital demonstrates a great advantage in electrochemical degradation from nitrate to ammonia, because their binding interaction and electron transfer between reactants and active sites are spin-dependent. Herein, we suggest a local structure distortion caused by a bimetallic hybridization to regulate the spin configuration from low to high by implanting one Fe atom into the Mn/Mn dimer on holey nitrogen-doped graphene, which makes the Mn magnetic moment increase to 3.31 μ<sub>B</sub> from 0.48 μ<sub>B</sub>. Meanwhile, the activation energy of the formed *NOH at rate-limiting step can be decreased to 0.79 eV, which is obviously lower than the pristine Fe/Fe (1.38 eV) and Mn/Mn (1.12 eV) dimers. These findings enlighten an intriguing strategy to enhance the reactive activity of dual-atom catalysts by regulating their spin configuration.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001006\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001006","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Asymmetric dual-metal-hybridization in dual-atom dimers trigger a spin transition for electrochemical degradation from nitrate to ammonia
The dual-atom dimer with half-filled 3d orbital demonstrates a great advantage in electrochemical degradation from nitrate to ammonia, because their binding interaction and electron transfer between reactants and active sites are spin-dependent. Herein, we suggest a local structure distortion caused by a bimetallic hybridization to regulate the spin configuration from low to high by implanting one Fe atom into the Mn/Mn dimer on holey nitrogen-doped graphene, which makes the Mn magnetic moment increase to 3.31 μB from 0.48 μB. Meanwhile, the activation energy of the formed *NOH at rate-limiting step can be decreased to 0.79 eV, which is obviously lower than the pristine Fe/Fe (1.38 eV) and Mn/Mn (1.12 eV) dimers. These findings enlighten an intriguing strategy to enhance the reactive activity of dual-atom catalysts by regulating their spin configuration.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.