2020 年 8 月 9-10 日朝鲜民主主义人民共和国暴雨事件的数值模拟

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Atmospheric and Solar-Terrestrial Physics Pub Date : 2024-07-11 DOI:10.1016/j.jastp.2024.106297
Yong-Min Ro, Kum-Ryong Jo
{"title":"2020 年 8 月 9-10 日朝鲜民主主义人民共和国暴雨事件的数值模拟","authors":"Yong-Min Ro,&nbsp;Kum-Ryong Jo","doi":"10.1016/j.jastp.2024.106297","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate forecasting of heavy rainfalls and understanding of their dynamics are important to minimize the damage caused by them in the Democratic People's Republic of Korea (DPR Korea). This study is conducted on a heavy rainfall event (452 mm) on 9–10 August 2020 over Pankyo region located on the midlands of the Korean peninsula. To verify the proper configuration of convection-permitting simulations, sensitivity experiments were performed with five microphysical schemes (Lin, Goddard, Thompson, Morrison and WDM6) of the Weather Research and Forecasting (WRF) model. The results suggested that all high-resolution simulations reflect the main characteristics of observed precipitation pattern well, but the location and intensity of maximum precipitation from scheme to scheme. Among the considered all the microphysics, the Lin scheme showed the best agreement with observed precipitation. Results also showed that the Lin scheme reproduced the vertical distribution and time variation of several hydrometeors, as well as dynamic and thermodynamic parameters associated with heavy rainfall well. These outcomes suggest that the suitable selection of microphysics schemes with WRF model is important to predict and understand heavy rainfall events over the DPR Korea.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"261 ","pages":"Article 106297"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations of the heavy rain event in the Democratic People's Republic of Korea during 9–10 August 2020\",\"authors\":\"Yong-Min Ro,&nbsp;Kum-Ryong Jo\",\"doi\":\"10.1016/j.jastp.2024.106297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate forecasting of heavy rainfalls and understanding of their dynamics are important to minimize the damage caused by them in the Democratic People's Republic of Korea (DPR Korea). This study is conducted on a heavy rainfall event (452 mm) on 9–10 August 2020 over Pankyo region located on the midlands of the Korean peninsula. To verify the proper configuration of convection-permitting simulations, sensitivity experiments were performed with five microphysical schemes (Lin, Goddard, Thompson, Morrison and WDM6) of the Weather Research and Forecasting (WRF) model. The results suggested that all high-resolution simulations reflect the main characteristics of observed precipitation pattern well, but the location and intensity of maximum precipitation from scheme to scheme. Among the considered all the microphysics, the Lin scheme showed the best agreement with observed precipitation. Results also showed that the Lin scheme reproduced the vertical distribution and time variation of several hydrometeors, as well as dynamic and thermodynamic parameters associated with heavy rainfall well. These outcomes suggest that the suitable selection of microphysics schemes with WRF model is important to predict and understand heavy rainfall events over the DPR Korea.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"261 \",\"pages\":\"Article 106297\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001251\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001251","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在朝鲜民主主义人民共和国(朝鲜),准确预报暴雨和了解暴雨动态对于最大限度地减少暴雨造成的损失非常重要。本研究针对 2020 年 8 月 9-10 日发生在朝鲜半岛中部潘桥地区的一次强降雨事件(452 毫米)展开。为了验证对流允许模拟的适当配置,使用天气研究和预报(WRF)模式的五个微物理方案(Lin、Goddard、Thompson、Morrison 和 WDM6)进行了敏感性实验。结果表明,所有高分辨率模拟都很好地反映了观测到的降水模式的主要特征,但最大降水的位置和强度因方案而异。在考虑的所有微物理量中,林方案与观测降水的一致性最好。结果还显示,林方案很好地再现了几种水文介质的垂直分布和时间变化,以及与强降雨相关的动力和热力学参数。这些结果表明,在 WRF 模型中选择合适的微物理方案对于预测和理解朝鲜的强降雨事件非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulations of the heavy rain event in the Democratic People's Republic of Korea during 9–10 August 2020

Accurate forecasting of heavy rainfalls and understanding of their dynamics are important to minimize the damage caused by them in the Democratic People's Republic of Korea (DPR Korea). This study is conducted on a heavy rainfall event (452 mm) on 9–10 August 2020 over Pankyo region located on the midlands of the Korean peninsula. To verify the proper configuration of convection-permitting simulations, sensitivity experiments were performed with five microphysical schemes (Lin, Goddard, Thompson, Morrison and WDM6) of the Weather Research and Forecasting (WRF) model. The results suggested that all high-resolution simulations reflect the main characteristics of observed precipitation pattern well, but the location and intensity of maximum precipitation from scheme to scheme. Among the considered all the microphysics, the Lin scheme showed the best agreement with observed precipitation. Results also showed that the Lin scheme reproduced the vertical distribution and time variation of several hydrometeors, as well as dynamic and thermodynamic parameters associated with heavy rainfall well. These outcomes suggest that the suitable selection of microphysics schemes with WRF model is important to predict and understand heavy rainfall events over the DPR Korea.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
期刊最新文献
Characterization of gravity wave events detected in the low ionosphere at the Brazilian Antarctic Station Comparative assessment of empirical random forest family's model in simulating future streamflow in different basin of Sarawak, Malaysia Air-sea interactions and Bay of Bengal basin wide variability with respect to long tracked cyclone ‘Viyaru’ Observation of sporadic E layer altitude partially modulated by the Traveling Ionospheric Disturbances at high latitudes over Zhongshan station On the low-latitude ionospheric irregularities under geomagnetically active and quiet conditions using NavIC observables: A spectral analysis approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1