{"title":"纳米-BN 和纳米纤维素协同增强了纤维素绝缘纸的机械、热和绝缘性能","authors":"","doi":"10.1016/j.compscitech.2024.110748","DOIUrl":null,"url":null,"abstract":"<div><p>The complex and demanding environments of high humidity, heat, altitude, and intricate electric fields necessitate higher standards for the mechanical, thermal stability, and electric insulation properties of insulating paper. However, a single nanomaterial alone struggles to enhance overall performance. Hence, we propose employing two-phase nanomaterials with distinct dimensions to synergistically enhance the performance of cellulose insulation paper. Accordingly, “simulation design directly guided experimental research” was utilized in constructing nano-BN/nanocellulose/cellulose (nano-BN/NFC/cellulose) models through molecular dynamics simulation, and its mechanical parameters, dielectric properties, thermal stability, and so on were simulated and calculated. Based on simulation results, suitable proportions of nano-BN/NFC/cellulose insulating paper were prepared. Nano-BN and NFC synergistically enhance the mechanical properties of insulating paper. The nano-BN, CNF, and cellulose are arranged layer by layer under the action of gravity, allowing the fillers to overlap diagonally along the plane, synergistically forming a thermally conductive network conducive to heat transfer. Additionally, a strong interfacial effect is formed between the three-phase materials, reducing the overall structure's polarization effect and charge accumulation, and synergistically enhancing electrical insulation performance. The 12%nano-BN/NFC/cellulose (P12) exhibits optimal overall performance and is expected to be used in power equipment operating in special environments with high humidity and heat.</p></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-BN and nano-cellulose synergistically enhanced the mechanical, thermal, and insulating properties of cellulose insulating paper\",\"authors\":\"\",\"doi\":\"10.1016/j.compscitech.2024.110748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complex and demanding environments of high humidity, heat, altitude, and intricate electric fields necessitate higher standards for the mechanical, thermal stability, and electric insulation properties of insulating paper. However, a single nanomaterial alone struggles to enhance overall performance. Hence, we propose employing two-phase nanomaterials with distinct dimensions to synergistically enhance the performance of cellulose insulation paper. Accordingly, “simulation design directly guided experimental research” was utilized in constructing nano-BN/nanocellulose/cellulose (nano-BN/NFC/cellulose) models through molecular dynamics simulation, and its mechanical parameters, dielectric properties, thermal stability, and so on were simulated and calculated. Based on simulation results, suitable proportions of nano-BN/NFC/cellulose insulating paper were prepared. Nano-BN and NFC synergistically enhance the mechanical properties of insulating paper. The nano-BN, CNF, and cellulose are arranged layer by layer under the action of gravity, allowing the fillers to overlap diagonally along the plane, synergistically forming a thermally conductive network conducive to heat transfer. Additionally, a strong interfacial effect is formed between the three-phase materials, reducing the overall structure's polarization effect and charge accumulation, and synergistically enhancing electrical insulation performance. The 12%nano-BN/NFC/cellulose (P12) exhibits optimal overall performance and is expected to be used in power equipment operating in special environments with high humidity and heat.</p></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026635382400318X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026635382400318X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Nano-BN and nano-cellulose synergistically enhanced the mechanical, thermal, and insulating properties of cellulose insulating paper
The complex and demanding environments of high humidity, heat, altitude, and intricate electric fields necessitate higher standards for the mechanical, thermal stability, and electric insulation properties of insulating paper. However, a single nanomaterial alone struggles to enhance overall performance. Hence, we propose employing two-phase nanomaterials with distinct dimensions to synergistically enhance the performance of cellulose insulation paper. Accordingly, “simulation design directly guided experimental research” was utilized in constructing nano-BN/nanocellulose/cellulose (nano-BN/NFC/cellulose) models through molecular dynamics simulation, and its mechanical parameters, dielectric properties, thermal stability, and so on were simulated and calculated. Based on simulation results, suitable proportions of nano-BN/NFC/cellulose insulating paper were prepared. Nano-BN and NFC synergistically enhance the mechanical properties of insulating paper. The nano-BN, CNF, and cellulose are arranged layer by layer under the action of gravity, allowing the fillers to overlap diagonally along the plane, synergistically forming a thermally conductive network conducive to heat transfer. Additionally, a strong interfacial effect is formed between the three-phase materials, reducing the overall structure's polarization effect and charge accumulation, and synergistically enhancing electrical insulation performance. The 12%nano-BN/NFC/cellulose (P12) exhibits optimal overall performance and is expected to be used in power equipment operating in special environments with high humidity and heat.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.