驾驭定量光声成像的挑战和解决方案

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2024-07-16 DOI:10.1063/5.0202401
Ruochong Zhang, Rabia'tul A'dawiah, Tristan Wen Jie Choo, Xiuting Li, Ghayathri Balasundaram, Yi Qi, Yonggeng Goh, Renzhe Bi, Malini Olivo
{"title":"驾驭定量光声成像的挑战和解决方案","authors":"Ruochong Zhang, Rabia'tul A'dawiah, Tristan Wen Jie Choo, Xiuting Li, Ghayathri Balasundaram, Yi Qi, Yonggeng Goh, Renzhe Bi, Malini Olivo","doi":"10.1063/5.0202401","DOIUrl":null,"url":null,"abstract":"Photoacoustic imaging, an emerging modality that seamlessly combines advantages of optical absorption contrast and ultrasound resolution, holds great promise for noninvasive imaging of biological tissues. Its applications span across diverse fields, such as dermatology, oncology, cardiology, and neurology. However, achieving accurate image reconstruction and physiological parameters quantification from raw photoacoustic signals presents a significant challenge. This challenge primarily arises from the inherent heterogeneity of tissues, encompassing variations in optical fluence and acoustic properties. In addition, incomplete information acquired from a limited view also leads to artifacts, image distortions, and reduced spatial resolution. Furthermore, robust spectral unmixing approach is another key step to restore the initial biochemical components' distribution with complex or unknown background absorption. To overcome these hurdles, researchers have proposed numerous state-of-the-art techniques, aiming to improve the accuracy and reliability of quantitative photoacoustic imaging (qPAI) in heterogeneous tissue. This review aims to comprehensively overview recent developments over the past decade, for addressing four main challenges frequently encountered in qPAI: limited-view reconstruction, acoustic heterogeneity, optical fluence fluctuations, and robust spectral unmixing, which serves as a reference for readers seeking to understand the specific challenges and corresponding solutions in this field.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"92 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating challenges and solutions in quantitative photoacoustic imaging\",\"authors\":\"Ruochong Zhang, Rabia'tul A'dawiah, Tristan Wen Jie Choo, Xiuting Li, Ghayathri Balasundaram, Yi Qi, Yonggeng Goh, Renzhe Bi, Malini Olivo\",\"doi\":\"10.1063/5.0202401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoacoustic imaging, an emerging modality that seamlessly combines advantages of optical absorption contrast and ultrasound resolution, holds great promise for noninvasive imaging of biological tissues. Its applications span across diverse fields, such as dermatology, oncology, cardiology, and neurology. However, achieving accurate image reconstruction and physiological parameters quantification from raw photoacoustic signals presents a significant challenge. This challenge primarily arises from the inherent heterogeneity of tissues, encompassing variations in optical fluence and acoustic properties. In addition, incomplete information acquired from a limited view also leads to artifacts, image distortions, and reduced spatial resolution. Furthermore, robust spectral unmixing approach is another key step to restore the initial biochemical components' distribution with complex or unknown background absorption. To overcome these hurdles, researchers have proposed numerous state-of-the-art techniques, aiming to improve the accuracy and reliability of quantitative photoacoustic imaging (qPAI) in heterogeneous tissue. This review aims to comprehensively overview recent developments over the past decade, for addressing four main challenges frequently encountered in qPAI: limited-view reconstruction, acoustic heterogeneity, optical fluence fluctuations, and robust spectral unmixing, which serves as a reference for readers seeking to understand the specific challenges and corresponding solutions in this field.\",\"PeriodicalId\":8200,\"journal\":{\"name\":\"Applied physics reviews\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied physics reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0202401\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0202401","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

光声成像是一种新兴模式,它完美地结合了光学吸收对比度和超声分辨率的优势,在生物组织的无创成像方面大有可为。它的应用横跨皮肤病学、肿瘤学、心脏病学和神经病学等多个领域。然而,从原始光声信号实现精确的图像重建和生理参数量化是一项重大挑战。这一挑战主要源于组织固有的异质性,包括光通量和声学特性的变化。此外,从有限视角获取的信息不完整也会导致伪影、图像失真和空间分辨率降低。此外,在复杂或未知背景吸收的情况下,要还原初始生化成分的分布,另一个关键步骤是采用稳健的光谱非混合方法。为了克服这些障碍,研究人员提出了许多最先进的技术,旨在提高异质组织中定量光声成像(qPAI)的准确性和可靠性。本综述旨在全面综述过去十年来的最新发展,以解决 qPAI 中经常遇到的四大难题:有限视角重建、声学异质性、光通量波动和稳健光谱非混合,为读者了解该领域的具体难题和相应解决方案提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Navigating challenges and solutions in quantitative photoacoustic imaging
Photoacoustic imaging, an emerging modality that seamlessly combines advantages of optical absorption contrast and ultrasound resolution, holds great promise for noninvasive imaging of biological tissues. Its applications span across diverse fields, such as dermatology, oncology, cardiology, and neurology. However, achieving accurate image reconstruction and physiological parameters quantification from raw photoacoustic signals presents a significant challenge. This challenge primarily arises from the inherent heterogeneity of tissues, encompassing variations in optical fluence and acoustic properties. In addition, incomplete information acquired from a limited view also leads to artifacts, image distortions, and reduced spatial resolution. Furthermore, robust spectral unmixing approach is another key step to restore the initial biochemical components' distribution with complex or unknown background absorption. To overcome these hurdles, researchers have proposed numerous state-of-the-art techniques, aiming to improve the accuracy and reliability of quantitative photoacoustic imaging (qPAI) in heterogeneous tissue. This review aims to comprehensively overview recent developments over the past decade, for addressing four main challenges frequently encountered in qPAI: limited-view reconstruction, acoustic heterogeneity, optical fluence fluctuations, and robust spectral unmixing, which serves as a reference for readers seeking to understand the specific challenges and corresponding solutions in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
MXene-TiO2 heterostructured iontronic neural devices based on ion-dynamic capacitance enabling optoelectronic modulation Recent advances in multimodal skin-like wearable sensors Thermal transport property of boron nitride nanosheets Flexible magnetoelectric systems: Types, principles, materials, preparation and application Advances in volatile organic compounds detection: From fundamental research to real-world applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1