Lauren Clark, Christopher A Voigt, Michael C Jewett
{"title":"建立用于基因部件原型设计的高产无叶绿体细胞系统。","authors":"Lauren Clark, Christopher A Voigt, Michael C Jewett","doi":"10.1021/acssynbio.4c00111","DOIUrl":null,"url":null,"abstract":"<p><p>Plastid engineering offers the potential to carry multigene traits in plants; however, it requires reliable genetic parts to balance expression. The difficulty of chloroplast transformation and slow plant growth makes it challenging to build plants just to characterize genetic parts. To address these limitations, we developed a high-yield cell-free system from <i>Nicotiana tabacum</i> chloroplast extracts for prototyping genetic parts. Our cell-free system uses combined transcription and translation driven by T7 RNA polymerase and works with plasmid or linear template DNA. To develop our system, we optimized lysis, extract preparation procedures (e.g., runoff reaction, centrifugation, and dialysis), and the physiochemical reaction conditions. Our cell-free system can synthesize 34 ± 1 μg/mL luciferase in batch reactions and 60 ± 4 μg/mL in semicontinuous reactions. We apply our batch reaction system to test a library of 103 ribosome binding site (RBS) variants and rank them based on cell-free gene expression. We observe a 1300-fold dynamic range of luciferase expression when normalized by maximum mRNA expression, as assessed by the malachite green aptamer. We also find that the observed normalized gene expression in chloroplast extracts and the predictions made by the RBS Calculator are correlated. We anticipate that chloroplast cell-free systems will increase the speed and reliability of building genetic systems in plant chloroplasts for diverse applications.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing a High-Yield Chloroplast Cell-Free System for Prototyping Genetic Parts.\",\"authors\":\"Lauren Clark, Christopher A Voigt, Michael C Jewett\",\"doi\":\"10.1021/acssynbio.4c00111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plastid engineering offers the potential to carry multigene traits in plants; however, it requires reliable genetic parts to balance expression. The difficulty of chloroplast transformation and slow plant growth makes it challenging to build plants just to characterize genetic parts. To address these limitations, we developed a high-yield cell-free system from <i>Nicotiana tabacum</i> chloroplast extracts for prototyping genetic parts. Our cell-free system uses combined transcription and translation driven by T7 RNA polymerase and works with plasmid or linear template DNA. To develop our system, we optimized lysis, extract preparation procedures (e.g., runoff reaction, centrifugation, and dialysis), and the physiochemical reaction conditions. Our cell-free system can synthesize 34 ± 1 μg/mL luciferase in batch reactions and 60 ± 4 μg/mL in semicontinuous reactions. We apply our batch reaction system to test a library of 103 ribosome binding site (RBS) variants and rank them based on cell-free gene expression. We observe a 1300-fold dynamic range of luciferase expression when normalized by maximum mRNA expression, as assessed by the malachite green aptamer. We also find that the observed normalized gene expression in chloroplast extracts and the predictions made by the RBS Calculator are correlated. We anticipate that chloroplast cell-free systems will increase the speed and reliability of building genetic systems in plant chloroplasts for diverse applications.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00111\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00111","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Establishing a High-Yield Chloroplast Cell-Free System for Prototyping Genetic Parts.
Plastid engineering offers the potential to carry multigene traits in plants; however, it requires reliable genetic parts to balance expression. The difficulty of chloroplast transformation and slow plant growth makes it challenging to build plants just to characterize genetic parts. To address these limitations, we developed a high-yield cell-free system from Nicotiana tabacum chloroplast extracts for prototyping genetic parts. Our cell-free system uses combined transcription and translation driven by T7 RNA polymerase and works with plasmid or linear template DNA. To develop our system, we optimized lysis, extract preparation procedures (e.g., runoff reaction, centrifugation, and dialysis), and the physiochemical reaction conditions. Our cell-free system can synthesize 34 ± 1 μg/mL luciferase in batch reactions and 60 ± 4 μg/mL in semicontinuous reactions. We apply our batch reaction system to test a library of 103 ribosome binding site (RBS) variants and rank them based on cell-free gene expression. We observe a 1300-fold dynamic range of luciferase expression when normalized by maximum mRNA expression, as assessed by the malachite green aptamer. We also find that the observed normalized gene expression in chloroplast extracts and the predictions made by the RBS Calculator are correlated. We anticipate that chloroplast cell-free systems will increase the speed and reliability of building genetic systems in plant chloroplasts for diverse applications.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.