Alexandru Stefan Barcan, Rares Andrei Barcan, Emanuel Vamanu
{"title":"细菌抗菌药耐药性传播和缓解策略的基因组学启示。","authors":"Alexandru Stefan Barcan, Rares Andrei Barcan, Emanuel Vamanu","doi":"10.2174/0113892010304596240629102419","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid emergence and global spread of antimicrobial resistance in recent years have raised significant concerns about the future of modern medicine. Superbugs and multidrugresistant bacteria have become endemic in many parts of the world, raising the specter of untreatable infections. The overuse and misuse of antimicrobials over the past 80 years have undoubtedly contributed to the development of antimicrobial resistance, placing immense pressure on healthcare systems worldwide. Nonetheless, the molecular mechanisms underlying antimicrobial resistance in bacteria have existed since ancient times. Some of these mechanisms and processes have served as the precursors of current resistance determinants, highlighting the ongoing arms race between bacteria and their antimicrobial adversaries. Moreover, the environment harbors many putative resistance genes, yet we cannot still predict which of these genes will emerge and manifest as pathogenic resistance phenotypes. The presence of antibiotics in natural habitats, even at sub-inhibitory concentrations, may provide selective pressures that favor the emergence of novel antimicrobial resistance apparatus and, thus, underscores the need for a comprehensive understanding of the factors driving the persistence and spread of antimicrobial resistance. As the development of antimicrobial strategies that evade resistance is urgently needed, a clear perception of these critical factors could ultimately pave the way for the design of innovative therapeutic targets.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic Insights into Bacterial Antimicrobial Resistance Transmission and Mitigation Strategies.\",\"authors\":\"Alexandru Stefan Barcan, Rares Andrei Barcan, Emanuel Vamanu\",\"doi\":\"10.2174/0113892010304596240629102419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid emergence and global spread of antimicrobial resistance in recent years have raised significant concerns about the future of modern medicine. Superbugs and multidrugresistant bacteria have become endemic in many parts of the world, raising the specter of untreatable infections. The overuse and misuse of antimicrobials over the past 80 years have undoubtedly contributed to the development of antimicrobial resistance, placing immense pressure on healthcare systems worldwide. Nonetheless, the molecular mechanisms underlying antimicrobial resistance in bacteria have existed since ancient times. Some of these mechanisms and processes have served as the precursors of current resistance determinants, highlighting the ongoing arms race between bacteria and their antimicrobial adversaries. Moreover, the environment harbors many putative resistance genes, yet we cannot still predict which of these genes will emerge and manifest as pathogenic resistance phenotypes. The presence of antibiotics in natural habitats, even at sub-inhibitory concentrations, may provide selective pressures that favor the emergence of novel antimicrobial resistance apparatus and, thus, underscores the need for a comprehensive understanding of the factors driving the persistence and spread of antimicrobial resistance. As the development of antimicrobial strategies that evade resistance is urgently needed, a clear perception of these critical factors could ultimately pave the way for the design of innovative therapeutic targets.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010304596240629102419\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010304596240629102419","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genomic Insights into Bacterial Antimicrobial Resistance Transmission and Mitigation Strategies.
The rapid emergence and global spread of antimicrobial resistance in recent years have raised significant concerns about the future of modern medicine. Superbugs and multidrugresistant bacteria have become endemic in many parts of the world, raising the specter of untreatable infections. The overuse and misuse of antimicrobials over the past 80 years have undoubtedly contributed to the development of antimicrobial resistance, placing immense pressure on healthcare systems worldwide. Nonetheless, the molecular mechanisms underlying antimicrobial resistance in bacteria have existed since ancient times. Some of these mechanisms and processes have served as the precursors of current resistance determinants, highlighting the ongoing arms race between bacteria and their antimicrobial adversaries. Moreover, the environment harbors many putative resistance genes, yet we cannot still predict which of these genes will emerge and manifest as pathogenic resistance phenotypes. The presence of antibiotics in natural habitats, even at sub-inhibitory concentrations, may provide selective pressures that favor the emergence of novel antimicrobial resistance apparatus and, thus, underscores the need for a comprehensive understanding of the factors driving the persistence and spread of antimicrobial resistance. As the development of antimicrobial strategies that evade resistance is urgently needed, a clear perception of these critical factors could ultimately pave the way for the design of innovative therapeutic targets.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.