威德尔海(南极洲)有机物质响应型浮游细菌的环境控制和代谢策略。

IF 4.3 2区 生物学 Q2 MICROBIOLOGY Environmental microbiology Pub Date : 2024-07-18 DOI:10.1111/1462-2920.16675
Judith Piontek, Christiane Hassenrück, Birthe Zäncker, Klaus Jürgens
{"title":"威德尔海(南极洲)有机物质响应型浮游细菌的环境控制和代谢策略。","authors":"Judith Piontek,&nbsp;Christiane Hassenrück,&nbsp;Birthe Zäncker,&nbsp;Klaus Jürgens","doi":"10.1111/1462-2920.16675","DOIUrl":null,"url":null,"abstract":"<p>Heterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas. Our experiments demonstrated that the combination of labile organic matter supply and temperature increase synergistically boosted bacterial growth. This suggests that, besides low seawater temperature, carbon limitation also hinders heterotrophic bacterial activity. Through the analysis of metagenome-assembled genomes, we discovered distinct genomic adaptation strategies in <i>Bacteroidia</i> and <i>Gammaproteobacteria</i>, both of which respond to organic matter. Both natural phytoplankton blooms and experimental addition of organic matter favoured <i>Bacteroidia</i>, which possess a large number of gene copies and a wide range of functional membrane transporters, glycoside hydrolases, and aminopeptidases. In contrast, the genomes of organic-matter-responsive <i>Gammaproteobacteria</i> were characterized by high densities of transcriptional regulators and transporters. Our findings suggest that bacterioplankton in the Weddell Sea, which respond to organic matter, employ metabolic strategies similar to those of their counterparts in temperate oceans. These strategies enable efficient growth at extremely low seawater temperatures, provided that organic carbon limitation is alleviated.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"26 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16675","citationCount":"0","resultStr":"{\"title\":\"Environmental control and metabolic strategies of organic-matter-responsive bacterioplankton in the Weddell Sea (Antarctica)\",\"authors\":\"Judith Piontek,&nbsp;Christiane Hassenrück,&nbsp;Birthe Zäncker,&nbsp;Klaus Jürgens\",\"doi\":\"10.1111/1462-2920.16675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas. Our experiments demonstrated that the combination of labile organic matter supply and temperature increase synergistically boosted bacterial growth. This suggests that, besides low seawater temperature, carbon limitation also hinders heterotrophic bacterial activity. Through the analysis of metagenome-assembled genomes, we discovered distinct genomic adaptation strategies in <i>Bacteroidia</i> and <i>Gammaproteobacteria</i>, both of which respond to organic matter. Both natural phytoplankton blooms and experimental addition of organic matter favoured <i>Bacteroidia</i>, which possess a large number of gene copies and a wide range of functional membrane transporters, glycoside hydrolases, and aminopeptidases. In contrast, the genomes of organic-matter-responsive <i>Gammaproteobacteria</i> were characterized by high densities of transcriptional regulators and transporters. Our findings suggest that bacterioplankton in the Weddell Sea, which respond to organic matter, employ metabolic strategies similar to those of their counterparts in temperate oceans. These strategies enable efficient growth at extremely low seawater temperatures, provided that organic carbon limitation is alleviated.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":\"26 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16675\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16675\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16675","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

异养微生物群落在推动海洋生态系统的碳通量方面发挥着重要作用。尽管这些群落非常重要,但在偏远的极地海洋中,对它们的研究仍然不足,而众所周知,极地海洋对大气中二氧化碳的生物减少做出了巨大贡献。我们的研究重点是了解参与威德尔海(包括其沿岸多湖泊)碳再矿化的关键细菌的环境因素和基因构成。我们的实验表明,可变有机物供应和温度升高共同促进了细菌的生长。这表明,除了海水温度低以外,碳限制也会阻碍异养细菌的活动。通过分析元基因组组装的基因组,我们发现了类杆菌属(Bacteroidia)和担子菌属(Gammaproteobacteria)不同的基因组适应策略。自然浮游植物藻华和实验性添加有机物都有利于类杆菌,因为类杆菌拥有大量基因拷贝和多种功能性膜转运体、糖苷水解酶和氨肽酶。与此相反,对有机物质反应灵敏的拟杆菌的基因组具有转录调节因子和转运体密度高的特点。我们的研究结果表明,威德尔海中对有机物质有反应的浮游细菌采用的代谢策略与温带海洋中的浮游细菌类似。只要有机碳的限制得到缓解,这些策略就能使细菌在极低的海水温度下高效生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental control and metabolic strategies of organic-matter-responsive bacterioplankton in the Weddell Sea (Antarctica)

Heterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas. Our experiments demonstrated that the combination of labile organic matter supply and temperature increase synergistically boosted bacterial growth. This suggests that, besides low seawater temperature, carbon limitation also hinders heterotrophic bacterial activity. Through the analysis of metagenome-assembled genomes, we discovered distinct genomic adaptation strategies in Bacteroidia and Gammaproteobacteria, both of which respond to organic matter. Both natural phytoplankton blooms and experimental addition of organic matter favoured Bacteroidia, which possess a large number of gene copies and a wide range of functional membrane transporters, glycoside hydrolases, and aminopeptidases. In contrast, the genomes of organic-matter-responsive Gammaproteobacteria were characterized by high densities of transcriptional regulators and transporters. Our findings suggest that bacterioplankton in the Weddell Sea, which respond to organic matter, employ metabolic strategies similar to those of their counterparts in temperate oceans. These strategies enable efficient growth at extremely low seawater temperatures, provided that organic carbon limitation is alleviated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
期刊最新文献
Succession of Bacteria and Archaea Within the Soil Micro-Food Web Shifts Soil Respiration Dynamics Another tool in the toolbox: Aphid-specific Wolbachia protect against fungal pathogens Bacterial communities on giant kelp in the Magellan Strait: Geographical and intra-thallus patterns Bee microbiomes in a changing climate: Investigating the effects of temperature on solitary bee life history and health Understanding the ecological versatility of Tetracladium species in temperate forest soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1