核武器爆炸尘降物建模:放射性核素及其衍生物的高效活性和剂量计算。

IF 1 4区 医学 Q4 ENVIRONMENTAL SCIENCES Health physics Pub Date : 2024-09-01 Epub Date: 2024-07-11 DOI:10.1097/HP.0000000000001834
Arjan van Dijk, Michiel de Bode, Astrid Kloosterman, Marte van der Linden, Jasper M Tomas
{"title":"核武器爆炸尘降物建模:放射性核素及其衍生物的高效活性和剂量计算。","authors":"Arjan van Dijk, Michiel de Bode, Astrid Kloosterman, Marte van der Linden, Jasper M Tomas","doi":"10.1097/HP.0000000000001834","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>The purpose of this paper is to present a practical method for quick determination of potential radiological doses and contaminations by fallout from nuclear detonations, or other releases, that includes the contributions from all nuclides. We precalculate individual (total) activities of all radionuclides from any initial cocktail and all their ingrowing progeny at a set of pinpoints in time with a logarithmic time-spacing. This is combined with the set of dose conversion factors (DCC) for any exposure pathway to obtain a time-dependent cocktail for the whole release as if it is one substance. An atmospheric dispersion model then provides the thinning coefficient of the released material to give local concentrations and dose rates. Progeny ingrowth is illustrated for pure 238 U and for a nuclear reactor that has been shut down. Efficient dose assessment is demonstrated for fallout from nuclear detonations and compared with the traditional approach of preselecting nuclides for specific endpoints and periods-of-interest. The compound cocktail DCC reduces the assessment of contaminations and potential dose-effects from fallout after a nuclear detonation to (the atmospheric dispersion of) only one tracer substance, representing any cocktail of nuclides and their progeny. This removes the need to follow all separate nuclides or an endpoint-specific preselection of \"most important nuclides.\" As the cocktail DCCs can be precalculated and the atmospheric dispersion of only one tracer substance has to be modelled, our method is fast. The model for calculating cocktail DCCs is freely available, easily coupled to any regular atmospheric dispersion model, and therefore ready for operational use by others.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"404-421"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Fallout from Nuclear Weapon Detonations: Efficient Activity and Dose Calculation of Radionuclides and Their Progeny.\",\"authors\":\"Arjan van Dijk, Michiel de Bode, Astrid Kloosterman, Marte van der Linden, Jasper M Tomas\",\"doi\":\"10.1097/HP.0000000000001834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>The purpose of this paper is to present a practical method for quick determination of potential radiological doses and contaminations by fallout from nuclear detonations, or other releases, that includes the contributions from all nuclides. We precalculate individual (total) activities of all radionuclides from any initial cocktail and all their ingrowing progeny at a set of pinpoints in time with a logarithmic time-spacing. This is combined with the set of dose conversion factors (DCC) for any exposure pathway to obtain a time-dependent cocktail for the whole release as if it is one substance. An atmospheric dispersion model then provides the thinning coefficient of the released material to give local concentrations and dose rates. Progeny ingrowth is illustrated for pure 238 U and for a nuclear reactor that has been shut down. Efficient dose assessment is demonstrated for fallout from nuclear detonations and compared with the traditional approach of preselecting nuclides for specific endpoints and periods-of-interest. The compound cocktail DCC reduces the assessment of contaminations and potential dose-effects from fallout after a nuclear detonation to (the atmospheric dispersion of) only one tracer substance, representing any cocktail of nuclides and their progeny. This removes the need to follow all separate nuclides or an endpoint-specific preselection of \\\"most important nuclides.\\\" As the cocktail DCCs can be precalculated and the atmospheric dispersion of only one tracer substance has to be modelled, our method is fast. The model for calculating cocktail DCCs is freely available, easily coupled to any regular atmospheric dispersion model, and therefore ready for operational use by others.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"404-421\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001834\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001834","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文的目的是提出一种实用的方法,用于快速确定核爆炸或其他释放的沉降物可能造成的辐射剂量和污染,其中包括所有核素的贡献。我们在一组时间间隔为对数的定点上,预先计算任何初始鸡尾酒中所有放射性核素及其所有生长后代的单个(总)放射性活度。将其与任何照射途径的剂量换算系数(DCC)组合起来,就可以得到整个释放过程中随时间变化的鸡尾酒,就好像它是一种物质一样。然后,大气扩散模型会提供释放物质的稀薄系数,从而得出局部浓度和剂量率。对纯 238U 和已关闭的核反应堆的后代生长进行了说明。演示了核爆沉降物的高效剂量评估,并与针对特定终点和关注期预选核素的传统方法进行了比较。化合物鸡尾酒 DCC 将核爆后的尘降污染和潜在剂量效应评估减少到(大气扩散的)仅一种示踪物质,代表任何鸡尾酒核素及其后代。这样就无需跟踪所有单独的核素,也无需针对终点预先选择 "最重要的核素"。由于鸡尾酒 DCCs 可以预先计算,而且只需对一种示踪物质的大气扩散进行建模,因此我们的方法非常快捷。用于计算鸡尾酒 DCCs 的模型可以免费获得,很容易与任何常规大气弥散模型相结合,因此可供其他人操作使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Fallout from Nuclear Weapon Detonations: Efficient Activity and Dose Calculation of Radionuclides and Their Progeny.

Abstract: The purpose of this paper is to present a practical method for quick determination of potential radiological doses and contaminations by fallout from nuclear detonations, or other releases, that includes the contributions from all nuclides. We precalculate individual (total) activities of all radionuclides from any initial cocktail and all their ingrowing progeny at a set of pinpoints in time with a logarithmic time-spacing. This is combined with the set of dose conversion factors (DCC) for any exposure pathway to obtain a time-dependent cocktail for the whole release as if it is one substance. An atmospheric dispersion model then provides the thinning coefficient of the released material to give local concentrations and dose rates. Progeny ingrowth is illustrated for pure 238 U and for a nuclear reactor that has been shut down. Efficient dose assessment is demonstrated for fallout from nuclear detonations and compared with the traditional approach of preselecting nuclides for specific endpoints and periods-of-interest. The compound cocktail DCC reduces the assessment of contaminations and potential dose-effects from fallout after a nuclear detonation to (the atmospheric dispersion of) only one tracer substance, representing any cocktail of nuclides and their progeny. This removes the need to follow all separate nuclides or an endpoint-specific preselection of "most important nuclides." As the cocktail DCCs can be precalculated and the atmospheric dispersion of only one tracer substance has to be modelled, our method is fast. The model for calculating cocktail DCCs is freely available, easily coupled to any regular atmospheric dispersion model, and therefore ready for operational use by others.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health physics
Health physics 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.20
自引率
0.00%
发文量
324
审稿时长
3-8 weeks
期刊介绍: Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.
期刊最新文献
HEALTH PHYSICS SOCIETY . 2025 AFFILIATE MEMBERS. Response to Dapra comments on "How Hermann J. Muller Viewed the Ernest Sternglass Contributions to Hereditary and Cancer Risk Assessment". THE HEALTH PHYSICS SOCIETY: An Affiliate of the International Radiation Protection Association (IRPA). A Critique of Edward Calabrese's and James Giordano's Review Article about Ernest Sternglass. Estimate of the Deterministic Neutron RBE for Radiation-induced Pseudo-Pelger Huët Cell Formation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1