基于本地表型耐药性数据的贝叶斯模型,为经验性抗生素升级决策提供依据。

IF 4.7 3区 医学 Q1 INFECTIOUS DISEASES Infectious Diseases and Therapy Pub Date : 2024-09-01 Epub Date: 2024-07-18 DOI:10.1007/s40121-024-01011-3
Ranjeet Bamber, Brian Sullivan, Léo Gorman, Winnie W Y Lee, Matthew B Avison, Andrew W Dowsey, Philip B Williams
{"title":"基于本地表型耐药性数据的贝叶斯模型,为经验性抗生素升级决策提供依据。","authors":"Ranjeet Bamber, Brian Sullivan, Léo Gorman, Winnie W Y Lee, Matthew B Avison, Andrew W Dowsey, Philip B Williams","doi":"10.1007/s40121-024-01011-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Clinicians commonly escalate empiric antibiotic therapy due to poor clinical progress without microbiology guidance. When escalating, they should take account of how resistance to an initial antibiotic affects the probability of resistance to subsequent options. The term \"escalation antibiogram\" (EA) has been coined to describe this concept. One difficulty when applying the EA concept to clinical practice is understanding the uncertainty in results and how this changes for specific patient subgroups.</p><p><strong>Methods: </strong>A Bayesian model was developed to estimate antibiotic resistance rates in Gram-negative bloodstream infections based on phenotypic resistance data. The model generates a series of \"credible\" curves to fit the resistance data, each with the same probability of representing the true rate given the inherent uncertainty. To avoid overfitting, an integrated penalisation term adaptively smooths the curves given the level of evidence.</p><p><strong>Results: </strong>Rates of resistance to empiric first-choice and potential escalation antibiotics were calculated for the whole hospitalised population based on 10,486 individual bloodstream infections, and for a range of specific patient groups, including ICU (intensive care unit), haematolo-oncology, and paediatric patients. The model generated an expected value (posterior mean) with 95% credible interval to illustrate uncertainty, based on the size of the patient subgroup. For example, the posterior means of piperacillin/tazobactam resistance rates in Gram-negative bloodstream infection are different between patients on ICU and the general hospital population: 27.3% (95% CI 18.1-37.2 vs. 13.4% 95% CI 11.0-16.1) respectively. The model can also estimate the probability of inferiority between two antibiotics for a specific patient population. Differences in optimal escalation antibiotic options between specific patient groups were noted.</p><p><strong>Conclusions: </strong>EA analysis informed by our Bayesian model is a useful tool to support empiric antibiotic switches, providing an estimate of local resistance rates, and a comparison of antibiotic options with a measure of the uncertainty in the data. We demonstrate that EAs calculated for the whole hospital population cannot be assumed to apply to specific patient group.</p>","PeriodicalId":13592,"journal":{"name":"Infectious Diseases and Therapy","volume":" ","pages":"1963-1981"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343932/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Model Based on Local Phenotypic Resistance Data to Inform Empiric Antibiotic Escalation Decisions.\",\"authors\":\"Ranjeet Bamber, Brian Sullivan, Léo Gorman, Winnie W Y Lee, Matthew B Avison, Andrew W Dowsey, Philip B Williams\",\"doi\":\"10.1007/s40121-024-01011-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Clinicians commonly escalate empiric antibiotic therapy due to poor clinical progress without microbiology guidance. When escalating, they should take account of how resistance to an initial antibiotic affects the probability of resistance to subsequent options. The term \\\"escalation antibiogram\\\" (EA) has been coined to describe this concept. One difficulty when applying the EA concept to clinical practice is understanding the uncertainty in results and how this changes for specific patient subgroups.</p><p><strong>Methods: </strong>A Bayesian model was developed to estimate antibiotic resistance rates in Gram-negative bloodstream infections based on phenotypic resistance data. The model generates a series of \\\"credible\\\" curves to fit the resistance data, each with the same probability of representing the true rate given the inherent uncertainty. To avoid overfitting, an integrated penalisation term adaptively smooths the curves given the level of evidence.</p><p><strong>Results: </strong>Rates of resistance to empiric first-choice and potential escalation antibiotics were calculated for the whole hospitalised population based on 10,486 individual bloodstream infections, and for a range of specific patient groups, including ICU (intensive care unit), haematolo-oncology, and paediatric patients. The model generated an expected value (posterior mean) with 95% credible interval to illustrate uncertainty, based on the size of the patient subgroup. For example, the posterior means of piperacillin/tazobactam resistance rates in Gram-negative bloodstream infection are different between patients on ICU and the general hospital population: 27.3% (95% CI 18.1-37.2 vs. 13.4% 95% CI 11.0-16.1) respectively. The model can also estimate the probability of inferiority between two antibiotics for a specific patient population. Differences in optimal escalation antibiotic options between specific patient groups were noted.</p><p><strong>Conclusions: </strong>EA analysis informed by our Bayesian model is a useful tool to support empiric antibiotic switches, providing an estimate of local resistance rates, and a comparison of antibiotic options with a measure of the uncertainty in the data. We demonstrate that EAs calculated for the whole hospital population cannot be assumed to apply to specific patient group.</p>\",\"PeriodicalId\":13592,\"journal\":{\"name\":\"Infectious Diseases and Therapy\",\"volume\":\" \",\"pages\":\"1963-1981\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343932/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infectious Diseases and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40121-024-01011-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Diseases and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40121-024-01011-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

导言:临床医生通常会在没有微生物学指导的情况下,因临床进展不佳而升级经验性抗生素治疗。在升级治疗时,他们应考虑到对初始抗生素的耐药性如何影响对后续方案的耐药性概率。人们创造了 "抗生素升级图"(EA)一词来描述这一概念。将 EA 概念应用于临床实践的一个困难是理解结果的不确定性,以及这种不确定性在特定患者亚群中的变化情况:方法:根据表型耐药性数据,开发了一个贝叶斯模型来估计革兰氏阴性血流感染的抗生素耐药率。该模型生成一系列 "可信 "曲线来拟合耐药性数据,鉴于固有的不确定性,每条曲线代表真实耐药率的概率相同。为避免过度拟合,一个综合惩罚项根据证据水平自适应地平滑曲线:根据 10,486 例血液感染病例计算出了住院病人对经验性首选抗生素和潜在升级抗生素的耐药率,并计算出了一系列特定病人群体的耐药率,包括 ICU(重症监护室)、血液肿瘤科和儿科病人。该模型根据患者亚组的规模生成了预期值(后验平均值)和 95% 可信区间,以说明不确定性。例如,在革兰氏阴性血流感染中,ICU 患者和普通医院患者的哌拉西林/他唑巴坦耐药率后验均值不同:分别为 27.3% (95% CI 18.1-37.2 vs. 13.4% 95% CI 11.0-16.1)。该模型还能估算出两种抗生素在特定患者群体中的劣效概率。我们注意到了特定患者群体在最佳升级抗生素选择上的差异:由我们的贝叶斯模型提供的 EA 分析是支持经验性抗生素转换的有用工具,它提供了局部耐药率的估计值,并通过数据的不确定性对抗生素选择进行了比较。我们证明,不能假定为整个医院人群计算的 EAs 适用于特定的患者群体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian Model Based on Local Phenotypic Resistance Data to Inform Empiric Antibiotic Escalation Decisions.

Introduction: Clinicians commonly escalate empiric antibiotic therapy due to poor clinical progress without microbiology guidance. When escalating, they should take account of how resistance to an initial antibiotic affects the probability of resistance to subsequent options. The term "escalation antibiogram" (EA) has been coined to describe this concept. One difficulty when applying the EA concept to clinical practice is understanding the uncertainty in results and how this changes for specific patient subgroups.

Methods: A Bayesian model was developed to estimate antibiotic resistance rates in Gram-negative bloodstream infections based on phenotypic resistance data. The model generates a series of "credible" curves to fit the resistance data, each with the same probability of representing the true rate given the inherent uncertainty. To avoid overfitting, an integrated penalisation term adaptively smooths the curves given the level of evidence.

Results: Rates of resistance to empiric first-choice and potential escalation antibiotics were calculated for the whole hospitalised population based on 10,486 individual bloodstream infections, and for a range of specific patient groups, including ICU (intensive care unit), haematolo-oncology, and paediatric patients. The model generated an expected value (posterior mean) with 95% credible interval to illustrate uncertainty, based on the size of the patient subgroup. For example, the posterior means of piperacillin/tazobactam resistance rates in Gram-negative bloodstream infection are different between patients on ICU and the general hospital population: 27.3% (95% CI 18.1-37.2 vs. 13.4% 95% CI 11.0-16.1) respectively. The model can also estimate the probability of inferiority between two antibiotics for a specific patient population. Differences in optimal escalation antibiotic options between specific patient groups were noted.

Conclusions: EA analysis informed by our Bayesian model is a useful tool to support empiric antibiotic switches, providing an estimate of local resistance rates, and a comparison of antibiotic options with a measure of the uncertainty in the data. We demonstrate that EAs calculated for the whole hospital population cannot be assumed to apply to specific patient group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infectious Diseases and Therapy
Infectious Diseases and Therapy Medicine-Microbiology (medical)
CiteScore
8.60
自引率
1.90%
发文量
136
审稿时长
6 weeks
期刊介绍: Infectious Diseases and Therapy is an international, open access, peer-reviewed, rapid publication journal dedicated to the publication of high-quality clinical (all phases), observational, real-world, and health outcomes research around the discovery, development, and use of infectious disease therapies and interventions, including vaccines and devices. Studies relating to diagnostic products and diagnosis, pharmacoeconomics, public health, epidemiology, quality of life, and patient care, management, and education are also encouraged. Areas of focus include, but are not limited to, bacterial and fungal infections, viral infections (including HIV/AIDS and hepatitis), parasitological diseases, tuberculosis and other mycobacterial diseases, vaccinations and other interventions, and drug-resistance, chronic infections, epidemiology and tropical, emergent, pediatric, dermal and sexually-transmitted diseases.
期刊最新文献
Correction to: Population Pharmacokinetics of Bepirovirsen in Healthy Participants and Participants with Chronic Hepatitis B Virus Infection: Results from Phase 1, 2a, and 2b Studies. Expanding Treatment Opportunities: Reviewing the Current State of Injectable Antiretrovirals for Treatment of HIV. Omadacycline for Diverse Infections in China: A Real-World Analysis of Efficacy and Safety. Effectiveness, Safety, and Patterns of Real-World Isavuconazole Use in Europe (2015-2019). Intravenous Versus Oral Omadacycline or Linezolid for Acute Bacterial Skin and Skin Infections: A post hoc Analysis of the OASIS Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1