Mehdi Zarei, Maryam Ghaderi Ghahfarokhi, Mohammad Sabaeian, Mahtab Sepahi, Soraya Alirezaie, Mohadeseh Mohebi
{"title":"等离子活化水对从零售海鲜市场砧板表面分离出的副溶血性弧菌浮游细胞和生物膜细胞的影响。","authors":"Mehdi Zarei, Maryam Ghaderi Ghahfarokhi, Mohammad Sabaeian, Mahtab Sepahi, Soraya Alirezaie, Mohadeseh Mohebi","doi":"10.1093/jambio/lxae182","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This research aimed to analyze cutting board surfaces in seafood markets to find Vibrio parahaemolyticus, assess the isolates' ability to form biofilms, generate and evaluate characteristics of plasma-activated water (PAW), and compare the effect of PAW on planktonic and biofilm cells of the isolated V. parahaemolyticus strains.</p><p><strong>Methods and results: </strong>A total of 11 V. parahaemolyticus strains were isolated from 8.87% of the examined cutting boards. Biofilm-forming ability was evaluated for these isolates at temperatures of 10°C, 20°C, and 30°C using crystal violet staining. Four strains with the highest biofilm potential were selected for further analysis. The pH of the PAW used in the study was 3.41 ± 0.04, and the initial concentrations of hydrogen peroxide, nitrate, and nitrite were 108 ± 9.6, 742 ± 61, and 36.3 ± 2.9 µM, respectively. However, these concentrations decreased significantly within 3-4 days during storage at room temperature. PAW exhibited significant antimicrobial effects on V. parahaemolyticus planktonic cells, reducing viable bacteria up to 4.54 log CFU/ml within 20 min. PAW also reduced the number of biofilm cells on stainless steel (up to 3.55 log CFU/cm2) and high-density polyethylene (up to 3.06 log CFU/cm2) surfaces, although to a lesser extent than planktonic cells.</p><p><strong>Conclusions: </strong>PAW exhibited significant antibacterial activity against V. parahaemolyticus cells, although its antibacterial properties diminished over time. Furthermore, the antibacterial activity of PAW against biofilm cells of V. parahaemolyticus was less pronounced compared to the planktonic cells. Therefore, the actual effectiveness of PAW in seafood processing environments can be affected by biofilms that may form on various surfaces such as cutting boards if they are not cleaned properly.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of plasma-activated water on planktonic and biofilm cells of Vibrio parahaemolyticus strains isolated from cutting board surfaces in retail seafood markets.\",\"authors\":\"Mehdi Zarei, Maryam Ghaderi Ghahfarokhi, Mohammad Sabaeian, Mahtab Sepahi, Soraya Alirezaie, Mohadeseh Mohebi\",\"doi\":\"10.1093/jambio/lxae182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>This research aimed to analyze cutting board surfaces in seafood markets to find Vibrio parahaemolyticus, assess the isolates' ability to form biofilms, generate and evaluate characteristics of plasma-activated water (PAW), and compare the effect of PAW on planktonic and biofilm cells of the isolated V. parahaemolyticus strains.</p><p><strong>Methods and results: </strong>A total of 11 V. parahaemolyticus strains were isolated from 8.87% of the examined cutting boards. Biofilm-forming ability was evaluated for these isolates at temperatures of 10°C, 20°C, and 30°C using crystal violet staining. Four strains with the highest biofilm potential were selected for further analysis. The pH of the PAW used in the study was 3.41 ± 0.04, and the initial concentrations of hydrogen peroxide, nitrate, and nitrite were 108 ± 9.6, 742 ± 61, and 36.3 ± 2.9 µM, respectively. However, these concentrations decreased significantly within 3-4 days during storage at room temperature. PAW exhibited significant antimicrobial effects on V. parahaemolyticus planktonic cells, reducing viable bacteria up to 4.54 log CFU/ml within 20 min. PAW also reduced the number of biofilm cells on stainless steel (up to 3.55 log CFU/cm2) and high-density polyethylene (up to 3.06 log CFU/cm2) surfaces, although to a lesser extent than planktonic cells.</p><p><strong>Conclusions: </strong>PAW exhibited significant antibacterial activity against V. parahaemolyticus cells, although its antibacterial properties diminished over time. Furthermore, the antibacterial activity of PAW against biofilm cells of V. parahaemolyticus was less pronounced compared to the planktonic cells. Therefore, the actual effectiveness of PAW in seafood processing environments can be affected by biofilms that may form on various surfaces such as cutting boards if they are not cleaned properly.</p>\",\"PeriodicalId\":15036,\"journal\":{\"name\":\"Journal of Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jambio/lxae182\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae182","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Effect of plasma-activated water on planktonic and biofilm cells of Vibrio parahaemolyticus strains isolated from cutting board surfaces in retail seafood markets.
Aims: This research aimed to analyze cutting board surfaces in seafood markets to find Vibrio parahaemolyticus, assess the isolates' ability to form biofilms, generate and evaluate characteristics of plasma-activated water (PAW), and compare the effect of PAW on planktonic and biofilm cells of the isolated V. parahaemolyticus strains.
Methods and results: A total of 11 V. parahaemolyticus strains were isolated from 8.87% of the examined cutting boards. Biofilm-forming ability was evaluated for these isolates at temperatures of 10°C, 20°C, and 30°C using crystal violet staining. Four strains with the highest biofilm potential were selected for further analysis. The pH of the PAW used in the study was 3.41 ± 0.04, and the initial concentrations of hydrogen peroxide, nitrate, and nitrite were 108 ± 9.6, 742 ± 61, and 36.3 ± 2.9 µM, respectively. However, these concentrations decreased significantly within 3-4 days during storage at room temperature. PAW exhibited significant antimicrobial effects on V. parahaemolyticus planktonic cells, reducing viable bacteria up to 4.54 log CFU/ml within 20 min. PAW also reduced the number of biofilm cells on stainless steel (up to 3.55 log CFU/cm2) and high-density polyethylene (up to 3.06 log CFU/cm2) surfaces, although to a lesser extent than planktonic cells.
Conclusions: PAW exhibited significant antibacterial activity against V. parahaemolyticus cells, although its antibacterial properties diminished over time. Furthermore, the antibacterial activity of PAW against biofilm cells of V. parahaemolyticus was less pronounced compared to the planktonic cells. Therefore, the actual effectiveness of PAW in seafood processing environments can be affected by biofilms that may form on various surfaces such as cutting boards if they are not cleaned properly.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.