增大孔径可抵消气孔密度降低对 WUE 的影响:甘蔗案例研究和荟萃分析。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2024-11-15 DOI:10.1093/jxb/erae271
Daniel Lunn, Baskaran Kannan, Amandine Germon, Alistair Leverett, Tom E Clemente, Fredy Altpeter, Andrew D B Leakey
{"title":"增大孔径可抵消气孔密度降低对 WUE 的影响:甘蔗案例研究和荟萃分析。","authors":"Daniel Lunn, Baskaran Kannan, Amandine Germon, Alistair Leverett, Tom E Clemente, Fredy Altpeter, Andrew D B Leakey","doi":"10.1093/jxb/erae271","DOIUrl":null,"url":null,"abstract":"<p><p>Stomata regulate CO2 and water vapor exchange between leaves and the atmosphere. Stomata are a target for engineering to improve crop intrinsic water use efficiency (iWUE). One example is by expressing genes that lower stomatal density (SD) and reduce stomatal conductance (gsw). However, the quantitative relationship between reduced SD, gsw, and the mechanisms underlying it is poorly understood. We addressed this knowledge gap using low-SD sugarcane (Saccharum spp. hybrid) as a case study alongside a meta-analysis of data from 10 species. Transgenic expression of EPIDERMAL PATTERNING FACTOR 2 from Sorghum bicolor (SbEPF2) in sugarcane reduced SD by 26-38% but did not affect gsw compared with the wild type. Further, no changes occurred in stomatal complex size or proxies for photosynthetic capacity. Measurements of gas exchange at low CO2 concentrations that promote complete stomatal opening to normalize aperture size between genotypes were combined with modeling of maximum gsw from anatomical data. These data suggest that increased stomatal aperture is the only possible explanation for maintaining gsw when SD is reduced. Meta-analysis across C3 dicots, C3 monocots, and C4 monocots revealed that engineered reductions in SD are strongly correlated with lower gsw (r2=0.60-0.98), but this response is damped relative to the change in anatomy.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6837-6849"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565199/pdf/","citationCount":"0","resultStr":"{\"title\":\"Greater aperture counteracts effects of reduced stomatal density on water use efficiency: a case study on sugarcane and meta-analysis.\",\"authors\":\"Daniel Lunn, Baskaran Kannan, Amandine Germon, Alistair Leverett, Tom E Clemente, Fredy Altpeter, Andrew D B Leakey\",\"doi\":\"10.1093/jxb/erae271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stomata regulate CO2 and water vapor exchange between leaves and the atmosphere. Stomata are a target for engineering to improve crop intrinsic water use efficiency (iWUE). One example is by expressing genes that lower stomatal density (SD) and reduce stomatal conductance (gsw). However, the quantitative relationship between reduced SD, gsw, and the mechanisms underlying it is poorly understood. We addressed this knowledge gap using low-SD sugarcane (Saccharum spp. hybrid) as a case study alongside a meta-analysis of data from 10 species. Transgenic expression of EPIDERMAL PATTERNING FACTOR 2 from Sorghum bicolor (SbEPF2) in sugarcane reduced SD by 26-38% but did not affect gsw compared with the wild type. Further, no changes occurred in stomatal complex size or proxies for photosynthetic capacity. Measurements of gas exchange at low CO2 concentrations that promote complete stomatal opening to normalize aperture size between genotypes were combined with modeling of maximum gsw from anatomical data. These data suggest that increased stomatal aperture is the only possible explanation for maintaining gsw when SD is reduced. Meta-analysis across C3 dicots, C3 monocots, and C4 monocots revealed that engineered reductions in SD are strongly correlated with lower gsw (r2=0.60-0.98), but this response is damped relative to the change in anatomy.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"6837-6849\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565199/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae271\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1093/jxb/erae271","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

气孔调节叶片与大气之间的二氧化碳和水蒸气交换。气孔是改善作物内在水分利用效率(iWUE)的工程目标。其中一个例子是表达降低气孔密度(SD)和减少气孔导度(gsw)的基因。然而,人们对降低气孔密度(SD)、气孔导度(gsw)之间的定量关系及其内在机制知之甚少。我们利用低SD甘蔗(Saccharum spp. 杂交甘蔗)作为案例研究,并对10个物种的数据进行了荟萃分析,从而填补了这一知识空白。与野生型相比,在甘蔗中转基因表达来自高粱双色(SbEFP2)的EPIDERMAL PATTERNING FACTOR 2可使SD降低26-38%,但不影响Gsw。此外,气孔复合体的大小或光合能力的代用指标也没有发生变化。测量低二氧化碳浓度下的气体交换量可促进气孔完全张开,从而使基因型之间的气孔大小正常化。这些数据表明,气孔孔径增大是在 SD 降低时维持 gsw 的唯一可能解释。对 C3 双子叶植物、C3 单子叶植物和 C4 单子叶植物进行的元分析表明,SD 的降低与较低的气孔率密切相关(r2=0.60-0.98),但相对于解剖结构的变化,这种反应受到了抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Greater aperture counteracts effects of reduced stomatal density on water use efficiency: a case study on sugarcane and meta-analysis.

Stomata regulate CO2 and water vapor exchange between leaves and the atmosphere. Stomata are a target for engineering to improve crop intrinsic water use efficiency (iWUE). One example is by expressing genes that lower stomatal density (SD) and reduce stomatal conductance (gsw). However, the quantitative relationship between reduced SD, gsw, and the mechanisms underlying it is poorly understood. We addressed this knowledge gap using low-SD sugarcane (Saccharum spp. hybrid) as a case study alongside a meta-analysis of data from 10 species. Transgenic expression of EPIDERMAL PATTERNING FACTOR 2 from Sorghum bicolor (SbEPF2) in sugarcane reduced SD by 26-38% but did not affect gsw compared with the wild type. Further, no changes occurred in stomatal complex size or proxies for photosynthetic capacity. Measurements of gas exchange at low CO2 concentrations that promote complete stomatal opening to normalize aperture size between genotypes were combined with modeling of maximum gsw from anatomical data. These data suggest that increased stomatal aperture is the only possible explanation for maintaining gsw when SD is reduced. Meta-analysis across C3 dicots, C3 monocots, and C4 monocots revealed that engineered reductions in SD are strongly correlated with lower gsw (r2=0.60-0.98), but this response is damped relative to the change in anatomy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Gibberellins: Extending the Green Revolution. Investigating biological nitrogen fixation via single-cell transcriptomics. TORquing chromatin: the regulatory role of TOR kinase on chromatin function. Innovative modeling on the effects of low-temperature stress on rice yields. Accounting for the impact of genotype and environment on variation in leaf respiration of wheat in Mexico and Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1