通过表达合成表皮形态因子降低气孔密度,提高叶片内在水分利用效率,减少 C4 作物的植物用水量。

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2024-11-15 DOI:10.1093/jxb/erae289
John N Ferguson, Peter Schmuker, Anna Dmitrieva, Truyen Quach, Tieling Zhang, Zhengxiang Ge, Natalya Nersesian, Shirley J Sato, Tom E Clemente, Andrew D B Leakey
{"title":"通过表达合成表皮形态因子降低气孔密度,提高叶片内在水分利用效率,减少 C4 作物的植物用水量。","authors":"John N Ferguson, Peter Schmuker, Anna Dmitrieva, Truyen Quach, Tieling Zhang, Zhengxiang Ge, Natalya Nersesian, Shirley J Sato, Tom E Clemente, Andrew D B Leakey","doi":"10.1093/jxb/erae289","DOIUrl":null,"url":null,"abstract":"<p><p>Enhancing crop water use efficiency (WUE) is a key target trait for climatic resilience and expanding cultivation on marginal lands. Engineering lower stomatal density to reduce stomatal conductance (gs) has improved WUE in multiple C3 crop species. However, reducing gs in C3 species often reduces photosynthetic carbon gain. A different response is expected in C4 plants because they possess specialized anatomy and biochemistry which concentrates CO2 at the site of fixation. This modifies the relationship of photosynthesis (AN) with intracellular CO2 concentration (ci), such that photosynthesis is CO2 saturated and reductions in gs are unlikely to limit AN. To test this hypothesis, genetic strategies were investigated to reduce stomatal density in the C4 crop sorghum. Constitutive expression of a synthetic epidermal patterning factor (EPF) transgenic allele in sorghum led to reduced stomatal densities, reduced gs, reduced plant water use, and avoidance of stress during a period of water deprivation. In addition, moderate reduction in stomatal density did not increase stomatal limitation to AN. However, these positive outcomes were associated with negative pleiotropic effects on reproductive development and photosynthetic capacity. Avoiding pleiotropy by targeting expression of the transgene to specific tissues could provide a pathway to improved agronomic outcomes.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"6823-6836"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565208/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reducing stomatal density by expression of a synthetic epidermal patterning factor increases leaf intrinsic water use efficiency and reduces plant water use in a C4 crop.\",\"authors\":\"John N Ferguson, Peter Schmuker, Anna Dmitrieva, Truyen Quach, Tieling Zhang, Zhengxiang Ge, Natalya Nersesian, Shirley J Sato, Tom E Clemente, Andrew D B Leakey\",\"doi\":\"10.1093/jxb/erae289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enhancing crop water use efficiency (WUE) is a key target trait for climatic resilience and expanding cultivation on marginal lands. Engineering lower stomatal density to reduce stomatal conductance (gs) has improved WUE in multiple C3 crop species. However, reducing gs in C3 species often reduces photosynthetic carbon gain. A different response is expected in C4 plants because they possess specialized anatomy and biochemistry which concentrates CO2 at the site of fixation. This modifies the relationship of photosynthesis (AN) with intracellular CO2 concentration (ci), such that photosynthesis is CO2 saturated and reductions in gs are unlikely to limit AN. To test this hypothesis, genetic strategies were investigated to reduce stomatal density in the C4 crop sorghum. Constitutive expression of a synthetic epidermal patterning factor (EPF) transgenic allele in sorghum led to reduced stomatal densities, reduced gs, reduced plant water use, and avoidance of stress during a period of water deprivation. In addition, moderate reduction in stomatal density did not increase stomatal limitation to AN. However, these positive outcomes were associated with negative pleiotropic effects on reproductive development and photosynthetic capacity. Avoiding pleiotropy by targeting expression of the transgene to specific tissues could provide a pathway to improved agronomic outcomes.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"6823-6836\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/erae289\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1093/jxb/erae289","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

提高作物水分利用效率(WUE)是恢复气候和扩大贫瘠土地种植的关键目标性状。降低气孔密度以减少气孔导度(gs)的工程技术已经改善了多种 C3 作物的水分利用效率。然而,降低 C3 物种的气孔导度通常会减少光合增碳。预计 C4 植物会有不同的反应,因为它们具有特殊的解剖结构和生物化学特性,可将二氧化碳集中在固定部位。这改变了光合作用(AN)与细胞内二氧化碳浓度(ci)的关系,因此光合作用是二氧化碳饱和的,gs 的减少不太可能限制 AN。为了验证这一假设,研究人员研究了降低 C4 作物高粱气孔密度的遗传策略。在高粱中连续表达合成的表皮模式因子(EPF)转基因等位基因会导致气孔密度降低、gs降低、植物用水量减少以及在缺水期间避免胁迫。此外,适度降低气孔密度不会增加气孔对 AN 的限制。然而,这些积极的结果与对生殖发育和光合能力的负面多效应相关。通过在特定组织中定向表达转基因来避免多效应,可为改善农艺结果提供一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing stomatal density by expression of a synthetic epidermal patterning factor increases leaf intrinsic water use efficiency and reduces plant water use in a C4 crop.

Enhancing crop water use efficiency (WUE) is a key target trait for climatic resilience and expanding cultivation on marginal lands. Engineering lower stomatal density to reduce stomatal conductance (gs) has improved WUE in multiple C3 crop species. However, reducing gs in C3 species often reduces photosynthetic carbon gain. A different response is expected in C4 plants because they possess specialized anatomy and biochemistry which concentrates CO2 at the site of fixation. This modifies the relationship of photosynthesis (AN) with intracellular CO2 concentration (ci), such that photosynthesis is CO2 saturated and reductions in gs are unlikely to limit AN. To test this hypothesis, genetic strategies were investigated to reduce stomatal density in the C4 crop sorghum. Constitutive expression of a synthetic epidermal patterning factor (EPF) transgenic allele in sorghum led to reduced stomatal densities, reduced gs, reduced plant water use, and avoidance of stress during a period of water deprivation. In addition, moderate reduction in stomatal density did not increase stomatal limitation to AN. However, these positive outcomes were associated with negative pleiotropic effects on reproductive development and photosynthetic capacity. Avoiding pleiotropy by targeting expression of the transgene to specific tissues could provide a pathway to improved agronomic outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Photoperiodic control of growth and reproduction in non-flowering plants. Gibberellins: Extending the Green Revolution. Investigating biological nitrogen fixation via single-cell transcriptomics. TORquing chromatin: the regulatory role of TOR kinase on chromatin function. Innovative modeling on the effects of low-temperature stress on rice yields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1