Tyler T Cooper, Dylan Z Dieters-Castator, Jiahui Liu, Gabrielle M Siegers, Desmond Pink, Lorena Veliz, John D Lewis, François Lagugné-Labarthet, Yangxin Fu, Helen Steed, Gilles A Lajoie, Lynne-Marie Postovit
{"title":"血浆细胞外囊泡的靶向蛋白质组学发现 MUC1 是早期检测高级别浆液性卵巢癌的组合生物标记物。","authors":"Tyler T Cooper, Dylan Z Dieters-Castator, Jiahui Liu, Gabrielle M Siegers, Desmond Pink, Lorena Veliz, John D Lewis, François Lagugné-Labarthet, Yangxin Fu, Helen Steed, Gilles A Lajoie, Lynne-Marie Postovit","doi":"10.1186/s13048-024-01471-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The five-year prognosis for patients with late-stage high-grade serous carcinoma (HGSC) remains dismal, underscoring the critical need for identifying early-stage biomarkers. This study explores the potential of extracellular vesicles (EVs) circulating in blood, which are believed to harbor proteomic cargo reflective of the HGSC microenvironment, as a source for biomarker discovery.</p><p><strong>Results: </strong>We conducted a comprehensive proteomic profiling of EVs isolated from blood plasma, ascites, and cell lines of patients, employing both data-dependent (DDA) and data-independent acquisition (DIA) methods to construct a spectral library tailored for targeted proteomics. Our investigation aimed at uncovering novel biomarkers for the early detection of HGSC by comparing the proteomic signatures of EVs from women with HGSC to those with benign gynecological conditions. The initial cohort, comprising 19 donors, utilized DDA proteomics for spectral library development. The subsequent cohort, involving 30 HGSC patients and 30 control subjects, employed DIA proteomics for a similar purpose. Support vector machine (SVM) classification was applied in both cohorts to identify combinatorial biomarkers with high specificity and sensitivity (ROC-AUC > 0.90). Notably, MUC1 emerged as a significant biomarker in both cohorts when used in combination with additional biomarkers. Validation through an ELISA assay on a subset of benign (n = 18), Stage I (n = 9), and stage II (n = 9) plasma samples corroborated the diagnostic utility of MUC1 in the early-stage detection of HGSC.</p><p><strong>Conclusions: </strong>This study highlights the value of EV-based proteomic analysis in the discovery of combinatorial biomarkers for early ovarian cancer detection.</p>","PeriodicalId":16610,"journal":{"name":"Journal of Ovarian Research","volume":"17 1","pages":"149"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253408/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeted proteomics of plasma extracellular vesicles uncovers MUC1 as combinatorial biomarker for the early detection of high-grade serous ovarian cancer.\",\"authors\":\"Tyler T Cooper, Dylan Z Dieters-Castator, Jiahui Liu, Gabrielle M Siegers, Desmond Pink, Lorena Veliz, John D Lewis, François Lagugné-Labarthet, Yangxin Fu, Helen Steed, Gilles A Lajoie, Lynne-Marie Postovit\",\"doi\":\"10.1186/s13048-024-01471-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The five-year prognosis for patients with late-stage high-grade serous carcinoma (HGSC) remains dismal, underscoring the critical need for identifying early-stage biomarkers. This study explores the potential of extracellular vesicles (EVs) circulating in blood, which are believed to harbor proteomic cargo reflective of the HGSC microenvironment, as a source for biomarker discovery.</p><p><strong>Results: </strong>We conducted a comprehensive proteomic profiling of EVs isolated from blood plasma, ascites, and cell lines of patients, employing both data-dependent (DDA) and data-independent acquisition (DIA) methods to construct a spectral library tailored for targeted proteomics. Our investigation aimed at uncovering novel biomarkers for the early detection of HGSC by comparing the proteomic signatures of EVs from women with HGSC to those with benign gynecological conditions. The initial cohort, comprising 19 donors, utilized DDA proteomics for spectral library development. The subsequent cohort, involving 30 HGSC patients and 30 control subjects, employed DIA proteomics for a similar purpose. Support vector machine (SVM) classification was applied in both cohorts to identify combinatorial biomarkers with high specificity and sensitivity (ROC-AUC > 0.90). Notably, MUC1 emerged as a significant biomarker in both cohorts when used in combination with additional biomarkers. Validation through an ELISA assay on a subset of benign (n = 18), Stage I (n = 9), and stage II (n = 9) plasma samples corroborated the diagnostic utility of MUC1 in the early-stage detection of HGSC.</p><p><strong>Conclusions: </strong>This study highlights the value of EV-based proteomic analysis in the discovery of combinatorial biomarkers for early ovarian cancer detection.</p>\",\"PeriodicalId\":16610,\"journal\":{\"name\":\"Journal of Ovarian Research\",\"volume\":\"17 1\",\"pages\":\"149\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253408/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovarian Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13048-024-01471-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovarian Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13048-024-01471-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
Targeted proteomics of plasma extracellular vesicles uncovers MUC1 as combinatorial biomarker for the early detection of high-grade serous ovarian cancer.
Background: The five-year prognosis for patients with late-stage high-grade serous carcinoma (HGSC) remains dismal, underscoring the critical need for identifying early-stage biomarkers. This study explores the potential of extracellular vesicles (EVs) circulating in blood, which are believed to harbor proteomic cargo reflective of the HGSC microenvironment, as a source for biomarker discovery.
Results: We conducted a comprehensive proteomic profiling of EVs isolated from blood plasma, ascites, and cell lines of patients, employing both data-dependent (DDA) and data-independent acquisition (DIA) methods to construct a spectral library tailored for targeted proteomics. Our investigation aimed at uncovering novel biomarkers for the early detection of HGSC by comparing the proteomic signatures of EVs from women with HGSC to those with benign gynecological conditions. The initial cohort, comprising 19 donors, utilized DDA proteomics for spectral library development. The subsequent cohort, involving 30 HGSC patients and 30 control subjects, employed DIA proteomics for a similar purpose. Support vector machine (SVM) classification was applied in both cohorts to identify combinatorial biomarkers with high specificity and sensitivity (ROC-AUC > 0.90). Notably, MUC1 emerged as a significant biomarker in both cohorts when used in combination with additional biomarkers. Validation through an ELISA assay on a subset of benign (n = 18), Stage I (n = 9), and stage II (n = 9) plasma samples corroborated the diagnostic utility of MUC1 in the early-stage detection of HGSC.
Conclusions: This study highlights the value of EV-based proteomic analysis in the discovery of combinatorial biomarkers for early ovarian cancer detection.
期刊介绍:
Journal of Ovarian Research is an open access, peer reviewed, online journal that aims to provide a forum for high-quality basic and clinical research on ovarian function, abnormalities, and cancer. The journal focuses on research that provides new insights into ovarian functions as well as prevention and treatment of diseases afflicting the organ.
Topical areas include, but are not restricted to:
Ovary development, hormone secretion and regulation
Follicle growth and ovulation
Infertility and Polycystic ovarian syndrome
Regulation of pituitary and other biological functions by ovarian hormones
Ovarian cancer, its prevention, diagnosis and treatment
Drug development and screening
Role of stem cells in ovary development and function.