A I Rusanova, B A Rusanov, A L Beltyukov, V E Sidorov, L D Son
{"title":"高温下铝-镍-钴-钕(Sm)玻璃化熔体的粘度。","authors":"A I Rusanova, B A Rusanov, A L Beltyukov, V E Sidorov, L D Son","doi":"10.1088/1361-648X/ad649e","DOIUrl":null,"url":null,"abstract":"<p><p>Obtaining amorphous alloys with good mechanical and anticorrosion properties is an important problem of modern condensed matter physics. Since the preparation of amorphous alloys involves casting them from liquid state, information on the properties of the melts is needed. Viscosity is one of the most informative structure-sensitive property of melts. In this paper viscosity of some glass-forming Al-Ni-Co-Nd(Sm) melts with different ratio of transition metals was studied using damped oscillation method in a wide temperature range up to 1550 K. Activation energies of the viscous flow were calculated from the experimental data. The hysteresis of viscosity temperature dependences during heating and subsequent cooling was found. It can be associated with a melt transition to a more homogeneous state. The repeated heating and cooling of the melts without crystallization lead to Arrhenius type of viscosity temperature dependences.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscosity of Al-Ni-Co-Nd(Sm) glass-forming melts at high temperatures.\",\"authors\":\"A I Rusanova, B A Rusanov, A L Beltyukov, V E Sidorov, L D Son\",\"doi\":\"10.1088/1361-648X/ad649e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obtaining amorphous alloys with good mechanical and anticorrosion properties is an important problem of modern condensed matter physics. Since the preparation of amorphous alloys involves casting them from liquid state, information on the properties of the melts is needed. Viscosity is one of the most informative structure-sensitive property of melts. In this paper viscosity of some glass-forming Al-Ni-Co-Nd(Sm) melts with different ratio of transition metals was studied using damped oscillation method in a wide temperature range up to 1550 K. Activation energies of the viscous flow were calculated from the experimental data. The hysteresis of viscosity temperature dependences during heating and subsequent cooling was found. It can be associated with a melt transition to a more homogeneous state. The repeated heating and cooling of the melts without crystallization lead to Arrhenius type of viscosity temperature dependences.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad649e\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad649e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
获得具有良好机械和防腐性能的非晶合金是现代凝聚态物理学的一个重要问题。由于非晶合金的制备需要从液态浇铸,因此需要有关熔体特性的信息。粘度是熔体对结构最敏感的特性之一。本文采用阻尼振荡法研究了一些过渡金属比例不同的玻璃化铝-镍-钴-钕(Sm)熔体在高达 1550 K 的宽温度范围内的粘度。在加热和随后冷却过程中,发现了粘度温度相关性的滞后现象。这可能与熔体过渡到更均匀的状态有关。在没有结晶的情况下反复加热和冷却熔体会导致阿伦尼乌斯类型的粘度温度相关性。
Viscosity of Al-Ni-Co-Nd(Sm) glass-forming melts at high temperatures.
Obtaining amorphous alloys with good mechanical and anticorrosion properties is an important problem of modern condensed matter physics. Since the preparation of amorphous alloys involves casting them from liquid state, information on the properties of the melts is needed. Viscosity is one of the most informative structure-sensitive property of melts. In this paper viscosity of some glass-forming Al-Ni-Co-Nd(Sm) melts with different ratio of transition metals was studied using damped oscillation method in a wide temperature range up to 1550 K. Activation energies of the viscous flow were calculated from the experimental data. The hysteresis of viscosity temperature dependences during heating and subsequent cooling was found. It can be associated with a melt transition to a more homogeneous state. The repeated heating and cooling of the melts without crystallization lead to Arrhenius type of viscosity temperature dependences.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.