用于高效固定透明质酸合成酶的 Nitrilotriacetic Acid Functionalized Microgels。

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Macromolecular bioscience Pub Date : 2024-07-17 DOI:10.1002/mabi.202400075
Isabel Katja Sommerfeld, Esther Maria Dälken, Lothar Elling, Andrij Pich
{"title":"用于高效固定透明质酸合成酶的 Nitrilotriacetic Acid Functionalized Microgels。","authors":"Isabel Katja Sommerfeld,&nbsp;Esther Maria Dälken,&nbsp;Lothar Elling,&nbsp;Andrij Pich","doi":"10.1002/mabi.202400075","DOIUrl":null,"url":null,"abstract":"<p>Enzymes play a vital role in synthesizing complex biological molecules like hyaluronic acid (HA). Immobilizing enzymes on support materials is essential for their efficient use and reuse in multiple cycles. Microgels, composed of cross–linked, highly swollen polymer networks, are ideal for enzyme uptake owing to their high porosity. This study demonstrates the immobilization of His<sub>6</sub>-tagged hyaluronan synthase from <i>Pasteurella multocida</i> (<i>Pm</i>HAS) onto nitrilotriacetic acid functionalized microgels using different bivalent ions (Ni<sup>2+</sup>, Co<sup>2+</sup>, Mn<sup>2+</sup>, Mg<sup>2+</sup>, and Fe<sup>2+</sup>) via metal affinity binding. The results indicate that using Ni<sup>2+</sup> yields the microgels with the highest enzyme uptake and HA formation. The immobilized <i>Pm</i>HAS enables repetitive enzymatic production, producing high molecular weight HAs with decreasing dispersities in each step. Furthermore, the highest reported yield of HA with high molecular weight for immobilized <i>Pm</i>HAS is achieved. This system establishes a foundation for continuous HA formation, with future works potentially enhancing <i>Pm</i>HAS stability through protein engineering.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"24 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400075","citationCount":"0","resultStr":"{\"title\":\"Nitrilotriacetic Acid Functionalized Microgels for Efficient Immobilization of Hyaluronan Synthase\",\"authors\":\"Isabel Katja Sommerfeld,&nbsp;Esther Maria Dälken,&nbsp;Lothar Elling,&nbsp;Andrij Pich\",\"doi\":\"10.1002/mabi.202400075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enzymes play a vital role in synthesizing complex biological molecules like hyaluronic acid (HA). Immobilizing enzymes on support materials is essential for their efficient use and reuse in multiple cycles. Microgels, composed of cross–linked, highly swollen polymer networks, are ideal for enzyme uptake owing to their high porosity. This study demonstrates the immobilization of His<sub>6</sub>-tagged hyaluronan synthase from <i>Pasteurella multocida</i> (<i>Pm</i>HAS) onto nitrilotriacetic acid functionalized microgels using different bivalent ions (Ni<sup>2+</sup>, Co<sup>2+</sup>, Mn<sup>2+</sup>, Mg<sup>2+</sup>, and Fe<sup>2+</sup>) via metal affinity binding. The results indicate that using Ni<sup>2+</sup> yields the microgels with the highest enzyme uptake and HA formation. The immobilized <i>Pm</i>HAS enables repetitive enzymatic production, producing high molecular weight HAs with decreasing dispersities in each step. Furthermore, the highest reported yield of HA with high molecular weight for immobilized <i>Pm</i>HAS is achieved. This system establishes a foundation for continuous HA formation, with future works potentially enhancing <i>Pm</i>HAS stability through protein engineering.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\"24 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mabi.202400075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400075\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400075","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

酶在合成透明质酸(HA)等复杂生物分子方面发挥着重要作用。将酶固定在支撑材料上对酶的高效利用和多次循环再利用至关重要。微凝胶由交联、高度膨胀的聚合物网络组成,因其孔隙率高而非常适合酶的吸收。本研究利用不同的二价离子(Ni2+、Co2+、Mn2+、Mg2+ 和 Fe2+),通过金属亲和性结合将 His6 标记的多杀性巴氏杆菌透明质酸合成酶(PmHAS)固定在氮基三乙酸功能化微凝胶上。结果表明,使用 Ni2+ 得到的微凝胶具有最高的酶吸收率和 HA 形成率。固定化 PmHAS 可实现重复酶解生产,生产出高分子量的 HA,且每一步的分散度都在降低。此外,据报道,固定化 PmHAS 的高分子量 HA 产量最高。该系统为连续 HA 的形成奠定了基础,未来的工作有可能通过蛋白质工程提高 PmHAS 的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrilotriacetic Acid Functionalized Microgels for Efficient Immobilization of Hyaluronan Synthase

Enzymes play a vital role in synthesizing complex biological molecules like hyaluronic acid (HA). Immobilizing enzymes on support materials is essential for their efficient use and reuse in multiple cycles. Microgels, composed of cross–linked, highly swollen polymer networks, are ideal for enzyme uptake owing to their high porosity. This study demonstrates the immobilization of His6-tagged hyaluronan synthase from Pasteurella multocida (PmHAS) onto nitrilotriacetic acid functionalized microgels using different bivalent ions (Ni2+, Co2+, Mn2+, Mg2+, and Fe2+) via metal affinity binding. The results indicate that using Ni2+ yields the microgels with the highest enzyme uptake and HA formation. The immobilized PmHAS enables repetitive enzymatic production, producing high molecular weight HAs with decreasing dispersities in each step. Furthermore, the highest reported yield of HA with high molecular weight for immobilized PmHAS is achieved. This system establishes a foundation for continuous HA formation, with future works potentially enhancing PmHAS stability through protein engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
期刊最新文献
A Natural Eumelanin-Assisted Pullulan/Chitosan Hydrogel for the Management of Diabetic Oral Ulcers. Electrospinning of Cellulose Benzyl Carbamates for Enantioselective Membrane Filtration. Neurotensin Conjugated Polymeric Porous Microparticles Suppress Inflammation and Improve Angiogenesis Aiding in Diabetic Wound Healing. Salt-Responsive Switchable Block Copolymer Brushes with Antibacterial and Antifouling Properties. Advances in Adhesive Materials for Oral and Maxillofacial Soft Tissue Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1