Nasima Akter Mukta, Samina Ahmed, A M Sarwaruddin Chowdhury, M Nuruzzaman Khan, Md Sahadat Hossain, Gawsia W Chowdhury, Papia Haque
{"title":"用于软组织再生的具有增强疏水性的聚乳酸混合明胶基纳米纤维垫。","authors":"Nasima Akter Mukta, Samina Ahmed, A M Sarwaruddin Chowdhury, M Nuruzzaman Khan, Md Sahadat Hossain, Gawsia W Chowdhury, Papia Haque","doi":"10.1080/03091902.2024.2379840","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing requires a substantial amount of moisture for faster recovery. Completely hydrophobic or hydrophilic biomaterials are not suitable to be applied for cell growth in wounded areas. The study aimed to prepare a nanofibrous scaffold from the blend of a solution of hydrophobic PLA and a solution of hydrophilic gelatine. The stability of the blend was achieved using a surfactant and an electrospun nanofibrous scaffold was made out of the solution. The optimum composition of gelatine and PLA to make a scaffold of uniform fibre diameter was achieved with the help of conductivity, viscosity and FESEM analysis. The optimum scaffold was characterised by TGA, DSC and XRD analysis. The water contact angle of the optimum sample was observed at 27°. The blended scaffold was found non-toxic to cells and showed a 30% faster healing of wounds in the rat model test compared to the healing rate of the PLA scaffold or the gelatine scaffold alone. The histological assay also supported the blend scaffold as an encouraging material for tissue regeneration.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"64-76"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLA blended gelatine-based nanofibrous mats with enhanced hydrophobicity for soft tissue regeneration.\",\"authors\":\"Nasima Akter Mukta, Samina Ahmed, A M Sarwaruddin Chowdhury, M Nuruzzaman Khan, Md Sahadat Hossain, Gawsia W Chowdhury, Papia Haque\",\"doi\":\"10.1080/03091902.2024.2379840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wound healing requires a substantial amount of moisture for faster recovery. Completely hydrophobic or hydrophilic biomaterials are not suitable to be applied for cell growth in wounded areas. The study aimed to prepare a nanofibrous scaffold from the blend of a solution of hydrophobic PLA and a solution of hydrophilic gelatine. The stability of the blend was achieved using a surfactant and an electrospun nanofibrous scaffold was made out of the solution. The optimum composition of gelatine and PLA to make a scaffold of uniform fibre diameter was achieved with the help of conductivity, viscosity and FESEM analysis. The optimum scaffold was characterised by TGA, DSC and XRD analysis. The water contact angle of the optimum sample was observed at 27°. The blended scaffold was found non-toxic to cells and showed a 30% faster healing of wounds in the rat model test compared to the healing rate of the PLA scaffold or the gelatine scaffold alone. The histological assay also supported the blend scaffold as an encouraging material for tissue regeneration.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":\" \",\"pages\":\"64-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2024.2379840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2024.2379840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
PLA blended gelatine-based nanofibrous mats with enhanced hydrophobicity for soft tissue regeneration.
Wound healing requires a substantial amount of moisture for faster recovery. Completely hydrophobic or hydrophilic biomaterials are not suitable to be applied for cell growth in wounded areas. The study aimed to prepare a nanofibrous scaffold from the blend of a solution of hydrophobic PLA and a solution of hydrophilic gelatine. The stability of the blend was achieved using a surfactant and an electrospun nanofibrous scaffold was made out of the solution. The optimum composition of gelatine and PLA to make a scaffold of uniform fibre diameter was achieved with the help of conductivity, viscosity and FESEM analysis. The optimum scaffold was characterised by TGA, DSC and XRD analysis. The water contact angle of the optimum sample was observed at 27°. The blended scaffold was found non-toxic to cells and showed a 30% faster healing of wounds in the rat model test compared to the healing rate of the PLA scaffold or the gelatine scaffold alone. The histological assay also supported the blend scaffold as an encouraging material for tissue regeneration.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.