{"title":"全面研究作为β分泌酶抑制剂的天然配体,以确定阿尔茨海默氏症治疗药物。","authors":"Shikha Kushwah, Ashutosh Mani","doi":"10.2174/0115672050323622240705043337","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Alzheimer's disease (AD) is an alarmingly prevalent worldwide neurological disorder that affects millions of people and has severe effects on cognitive functions. The amyloid hypothesis, which links AD to Aβ (amyloid beta) plaque aggregation, is a well-acknowledged theory. The β-secretase (BACE1) is the main cause of Aβ production, which makes it a possible target for therapy. FDA-approved therapies for AD do exist, but none of them explicitly target BACE1, and their effectiveness is constrained and accompanied by adverse effects.</p><p><strong>Materials and methods: </strong>We determined the essential chemical components of medicinal herbs by conducting a thorough literature research for BACE1. Computational methods like molecular docking, ADMET (Absorption, distribution, metabolism, excretion, toxicity) screening, molecular dynamic simulations, and MMPBSA analysis were performed in order to identify the most promising ligands for β-secretase.</p><p><strong>Results: </strong>The results suggested that withasomniferol, tinosporide, and curcumin had better binding affinity with BACE1, suggesting their potential as therapeutic candidates against Alzheimer's disease.</p><p><strong>Conclusion: </strong>Herbal therapeutics have immense applications in the treatment of chronic diseases like Alzheimer's disease, and there is an urgent need to assess their efficacy as therapeutics.</p>","PeriodicalId":94309,"journal":{"name":"Current Alzheimer research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Investigation of Natural Ligands as Inhibitors of β Secretase to Identify Alzheimer's Disease Therapeutics.\",\"authors\":\"Shikha Kushwah, Ashutosh Mani\",\"doi\":\"10.2174/0115672050323622240705043337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Alzheimer's disease (AD) is an alarmingly prevalent worldwide neurological disorder that affects millions of people and has severe effects on cognitive functions. The amyloid hypothesis, which links AD to Aβ (amyloid beta) plaque aggregation, is a well-acknowledged theory. The β-secretase (BACE1) is the main cause of Aβ production, which makes it a possible target for therapy. FDA-approved therapies for AD do exist, but none of them explicitly target BACE1, and their effectiveness is constrained and accompanied by adverse effects.</p><p><strong>Materials and methods: </strong>We determined the essential chemical components of medicinal herbs by conducting a thorough literature research for BACE1. Computational methods like molecular docking, ADMET (Absorption, distribution, metabolism, excretion, toxicity) screening, molecular dynamic simulations, and MMPBSA analysis were performed in order to identify the most promising ligands for β-secretase.</p><p><strong>Results: </strong>The results suggested that withasomniferol, tinosporide, and curcumin had better binding affinity with BACE1, suggesting their potential as therapeutic candidates against Alzheimer's disease.</p><p><strong>Conclusion: </strong>Herbal therapeutics have immense applications in the treatment of chronic diseases like Alzheimer's disease, and there is an urgent need to assess their efficacy as therapeutics.</p>\",\"PeriodicalId\":94309,\"journal\":{\"name\":\"Current Alzheimer research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Alzheimer research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672050323622240705043337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672050323622240705043337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comprehensive Investigation of Natural Ligands as Inhibitors of β Secretase to Identify Alzheimer's Disease Therapeutics.
Introduction: Alzheimer's disease (AD) is an alarmingly prevalent worldwide neurological disorder that affects millions of people and has severe effects on cognitive functions. The amyloid hypothesis, which links AD to Aβ (amyloid beta) plaque aggregation, is a well-acknowledged theory. The β-secretase (BACE1) is the main cause of Aβ production, which makes it a possible target for therapy. FDA-approved therapies for AD do exist, but none of them explicitly target BACE1, and their effectiveness is constrained and accompanied by adverse effects.
Materials and methods: We determined the essential chemical components of medicinal herbs by conducting a thorough literature research for BACE1. Computational methods like molecular docking, ADMET (Absorption, distribution, metabolism, excretion, toxicity) screening, molecular dynamic simulations, and MMPBSA analysis were performed in order to identify the most promising ligands for β-secretase.
Results: The results suggested that withasomniferol, tinosporide, and curcumin had better binding affinity with BACE1, suggesting their potential as therapeutic candidates against Alzheimer's disease.
Conclusion: Herbal therapeutics have immense applications in the treatment of chronic diseases like Alzheimer's disease, and there is an urgent need to assess their efficacy as therapeutics.