相位选择对计算分布式能源资源托管容量的准确性和可扩展性的影响

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS Sustainable Energy Grids & Networks Pub Date : 2024-07-10 DOI:10.1016/j.segan.2024.101473
{"title":"相位选择对计算分布式能源资源托管容量的准确性和可扩展性的影响","authors":"","doi":"10.1016/j.segan.2024.101473","DOIUrl":null,"url":null,"abstract":"<div><p>Hosting capacity (HC) and dynamic operating envelopes (DOEs), defined as dynamic, time-varying HC, are calculated using three-phase optimal power flow (OPF) formulations. Due to the computational complexity of such optimisation problems, HC and DOE are often calculated by introducing certain assumptions and approximations, including the linearised OPF formulation, which we implement in the Python-based tool ppOPF. Furthermore, we investigate how assumptions of the distributed energy resource (DER) connection phase impact the objective function value and computational time in calculating HC and DOE in distribution networks of different sizes. The results are not unambiguous and show that it is not possible to determine the optimal connection phase without introducing binary variables since, no matter the case study, the highest objective function values are calculated with mixed integer OPF formulations. The difference is especially visible in a real-world low-voltage network in which the difference between different scenarios is up to 14 MW in a single day. However, binary variables make the problem computationally complex and increase computational time to several hours in the DOE calculation, even when the optimality gap different from zero is set.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of phase selection on accuracy and scalability in calculating distributed energy resources hosting capacity\",\"authors\":\"\",\"doi\":\"10.1016/j.segan.2024.101473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hosting capacity (HC) and dynamic operating envelopes (DOEs), defined as dynamic, time-varying HC, are calculated using three-phase optimal power flow (OPF) formulations. Due to the computational complexity of such optimisation problems, HC and DOE are often calculated by introducing certain assumptions and approximations, including the linearised OPF formulation, which we implement in the Python-based tool ppOPF. Furthermore, we investigate how assumptions of the distributed energy resource (DER) connection phase impact the objective function value and computational time in calculating HC and DOE in distribution networks of different sizes. The results are not unambiguous and show that it is not possible to determine the optimal connection phase without introducing binary variables since, no matter the case study, the highest objective function values are calculated with mixed integer OPF formulations. The difference is especially visible in a real-world low-voltage network in which the difference between different scenarios is up to 14 MW in a single day. However, binary variables make the problem computationally complex and increase computational time to several hours in the DOE calculation, even when the optimality gap different from zero is set.</p></div>\",\"PeriodicalId\":56142,\"journal\":{\"name\":\"Sustainable Energy Grids & Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Grids & Networks\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352467724002029\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

托管容量(HC)和动态运行包络(DOE),定义为动态、时变的 HC,使用三相优化功率流(OPF)公式计算。由于此类优化问题的计算复杂性,HC 和 DOE 通常通过引入某些假设和近似值来计算,包括线性化 OPF 公式,我们在基于 Python 的工具 ppOPF 中实现了这一计算。此外,我们还研究了在计算不同规模配电网络的 HC 和 DOE 时,分布式能源资源 (DER) 连接阶段的假设如何影响目标函数值和计算时间。结果并不明确,并表明不引入二进制变量不可能确定最佳连接阶段,因为无论案例研究如何,最高目标函数值都是通过混合整数 OPF 公式计算得出的。这种差异在现实世界的低压电网中尤为明显,不同方案在一天内的差异高达 14 兆瓦。然而,二进制变量会使问题的计算变得复杂,即使设置了与零不同的优化差距,DOE 计算的计算时间也会增加几个小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of phase selection on accuracy and scalability in calculating distributed energy resources hosting capacity

Hosting capacity (HC) and dynamic operating envelopes (DOEs), defined as dynamic, time-varying HC, are calculated using three-phase optimal power flow (OPF) formulations. Due to the computational complexity of such optimisation problems, HC and DOE are often calculated by introducing certain assumptions and approximations, including the linearised OPF formulation, which we implement in the Python-based tool ppOPF. Furthermore, we investigate how assumptions of the distributed energy resource (DER) connection phase impact the objective function value and computational time in calculating HC and DOE in distribution networks of different sizes. The results are not unambiguous and show that it is not possible to determine the optimal connection phase without introducing binary variables since, no matter the case study, the highest objective function values are calculated with mixed integer OPF formulations. The difference is especially visible in a real-world low-voltage network in which the difference between different scenarios is up to 14 MW in a single day. However, binary variables make the problem computationally complex and increase computational time to several hours in the DOE calculation, even when the optimality gap different from zero is set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
期刊最新文献
Secured energy data transaction for prosumers under diverse cyberattack scenarios Investigating the long-term benefits of EU electricity highways: The case of the Green Aegean Interconnector Blockchain-enabled transformation: Decentralized planning and secure peer-to-peer trading in local energy networks Integrated real-time dispatch of power and gas systems Two-stage low-carbon economic dispatch of an integrated energy system considering flexible decoupling of electricity and heat on sides of source and load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1