{"title":"MATERIAL 框架:QNX 实时操作系统下边缘实时应用程序的建模和自动代码生成","authors":"Matthias Becker , Daniel Casini","doi":"10.1016/j.sysarc.2024.103219","DOIUrl":null,"url":null,"abstract":"<div><p>Modern edge real-time automotive applications are becoming more complex, dynamic, and distributed, moving away from conventional static operating environments to support advanced driving assistance and autonomous driving functionalities. This shift necessitates formulating more complex task models to represent the evolving nature of these applications aptly. Modeling of real-time automotive systems is typically performed leveraging Architectural Languages (ALs) such as Amalthea, which are commonly used by the industry to describe the characteristics of processing platforms, operating systems, and tasks. However, these architectural languages are originally derived for classical automotive applications and need to evolve to meet the needs of next-generation applications. This paper proposes an automatic framework for the modeling and automatic code generation of dynamic automotive applications under the QNX RTOS. To this end, we extend Amalthea to describe chains of communicating tasks with multiple operating modes and to consider the QNX’s reservation-based scheduler, called APS, which allows providing temporal isolation between applications co-located on the same hardware platform. Finally, an evaluation is presented to compare different implementation alternatives under QNX that are automatically generated by our code generation framework.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"154 ","pages":"Article 103219"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1383762124001565/pdfft?md5=258b0f60a13dd33f7e69709261bad3e1&pid=1-s2.0-S1383762124001565-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The MATERIAL framework: Modeling and AuTomatic code Generation of Edge Real-TIme AppLications under the QNX RTOS\",\"authors\":\"Matthias Becker , Daniel Casini\",\"doi\":\"10.1016/j.sysarc.2024.103219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modern edge real-time automotive applications are becoming more complex, dynamic, and distributed, moving away from conventional static operating environments to support advanced driving assistance and autonomous driving functionalities. This shift necessitates formulating more complex task models to represent the evolving nature of these applications aptly. Modeling of real-time automotive systems is typically performed leveraging Architectural Languages (ALs) such as Amalthea, which are commonly used by the industry to describe the characteristics of processing platforms, operating systems, and tasks. However, these architectural languages are originally derived for classical automotive applications and need to evolve to meet the needs of next-generation applications. This paper proposes an automatic framework for the modeling and automatic code generation of dynamic automotive applications under the QNX RTOS. To this end, we extend Amalthea to describe chains of communicating tasks with multiple operating modes and to consider the QNX’s reservation-based scheduler, called APS, which allows providing temporal isolation between applications co-located on the same hardware platform. Finally, an evaluation is presented to compare different implementation alternatives under QNX that are automatically generated by our code generation framework.</p></div>\",\"PeriodicalId\":50027,\"journal\":{\"name\":\"Journal of Systems Architecture\",\"volume\":\"154 \",\"pages\":\"Article 103219\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1383762124001565/pdfft?md5=258b0f60a13dd33f7e69709261bad3e1&pid=1-s2.0-S1383762124001565-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Architecture\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383762124001565\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124001565","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
The MATERIAL framework: Modeling and AuTomatic code Generation of Edge Real-TIme AppLications under the QNX RTOS
Modern edge real-time automotive applications are becoming more complex, dynamic, and distributed, moving away from conventional static operating environments to support advanced driving assistance and autonomous driving functionalities. This shift necessitates formulating more complex task models to represent the evolving nature of these applications aptly. Modeling of real-time automotive systems is typically performed leveraging Architectural Languages (ALs) such as Amalthea, which are commonly used by the industry to describe the characteristics of processing platforms, operating systems, and tasks. However, these architectural languages are originally derived for classical automotive applications and need to evolve to meet the needs of next-generation applications. This paper proposes an automatic framework for the modeling and automatic code generation of dynamic automotive applications under the QNX RTOS. To this end, we extend Amalthea to describe chains of communicating tasks with multiple operating modes and to consider the QNX’s reservation-based scheduler, called APS, which allows providing temporal isolation between applications co-located on the same hardware platform. Finally, an evaluation is presented to compare different implementation alternatives under QNX that are automatically generated by our code generation framework.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.