使用近端政策方案的最优车辆通信资源分配和模式选择

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY alexandria engineering journal Pub Date : 2024-07-18 DOI:10.1016/j.aej.2024.07.010
{"title":"使用近端政策方案的最优车辆通信资源分配和模式选择","authors":"","doi":"10.1016/j.aej.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicle-to-everything (V2X) communication is essential in 5G and upcoming networks as it enables seamless interaction between vehicles and infrastructure, ensuring the reliable transmission of critical and time-sensitive data. Challenges like unstable communication in highly mobile vehicular networks, limited channel state information, high transmission overhead, and significant communication costs hinder vehicle-to-vehicle (V2V) communication. To tackle these issues, a unified approach utilizing distributed deep reinforcement learning is proposed to enhance the overall network performance while meeting the quality of service (QoS), latency, and rate requirements. Recognizing the complexity of this NP-hard, non-convex problem, a machine learning framework based on the Markov decision process (MDP) is adopted for a robust strategy. This framework facilitates the formulation of a reward function and the selection of optimal actions with certainty. Furthermore, a spectrum-based allocation framework employing multi-agent deep reinforcement learning (MADRL) is confidently introduced. The deep deterministic policy gradient (DDPG) within this framework enables the exchange of historical data globally during the primary learning phase, effectively removing the need for signal interaction and manual intervention in optimizing system efficiency. The data transmission policy follows an augmented online policy scheme, known as the proximal online policy scheme (POPS), which confidently reduces the computational complexity during the learning process. The complexity is marginally adjusted using the clipping substitute technique with assurance in the learning phase. Simulation results validate that the proposed method outperforms existing decentralized systems in achieving a higher average data transmission rate and ensuring quality of service (QoS) satisfaction confidently.</p></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110016824007312/pdfft?md5=df782746c6569cf0cb29189a60affe54&pid=1-s2.0-S1110016824007312-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An optimal resource assignment and mode selection for vehicular communication using proximal on-policy scheme\",\"authors\":\"\",\"doi\":\"10.1016/j.aej.2024.07.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vehicle-to-everything (V2X) communication is essential in 5G and upcoming networks as it enables seamless interaction between vehicles and infrastructure, ensuring the reliable transmission of critical and time-sensitive data. Challenges like unstable communication in highly mobile vehicular networks, limited channel state information, high transmission overhead, and significant communication costs hinder vehicle-to-vehicle (V2V) communication. To tackle these issues, a unified approach utilizing distributed deep reinforcement learning is proposed to enhance the overall network performance while meeting the quality of service (QoS), latency, and rate requirements. Recognizing the complexity of this NP-hard, non-convex problem, a machine learning framework based on the Markov decision process (MDP) is adopted for a robust strategy. This framework facilitates the formulation of a reward function and the selection of optimal actions with certainty. Furthermore, a spectrum-based allocation framework employing multi-agent deep reinforcement learning (MADRL) is confidently introduced. The deep deterministic policy gradient (DDPG) within this framework enables the exchange of historical data globally during the primary learning phase, effectively removing the need for signal interaction and manual intervention in optimizing system efficiency. The data transmission policy follows an augmented online policy scheme, known as the proximal online policy scheme (POPS), which confidently reduces the computational complexity during the learning process. The complexity is marginally adjusted using the clipping substitute technique with assurance in the learning phase. Simulation results validate that the proposed method outperforms existing decentralized systems in achieving a higher average data transmission rate and ensuring quality of service (QoS) satisfaction confidently.</p></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1110016824007312/pdfft?md5=df782746c6569cf0cb29189a60affe54&pid=1-s2.0-S1110016824007312-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824007312\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824007312","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

车对物(V2X)通信在 5G 和即将到来的网络中至关重要,因为它能实现车辆与基础设施之间的无缝互动,确保关键和时间敏感数据的可靠传输。在高度移动的车辆网络中,通信不稳定、信道状态信息有限、传输开销大以及通信成本高昂等挑战阻碍了车对车(V2V)通信。为解决这些问题,我们提出了一种利用分布式深度强化学习的统一方法,以提高整体网络性能,同时满足服务质量(QoS)、延迟和速率要求。考虑到这一 NP 难、非凸问题的复杂性,我们采用了基于马尔可夫决策过程(MDP)的机器学习框架,以制定稳健的策略。该框架有助于制定奖励函数和选择确定的最优行动。此外,还引入了基于频谱的多代理深度强化学习(MADRL)分配框架。该框架中的深度确定性策略梯度(DDPG)可在初级学习阶段全局交换历史数据,有效消除了优化系统效率过程中的信号交互和人工干预需求。数据传输策略采用一种增强型在线策略方案,即近端在线策略方案(POPS),它能有效降低学习过程中的计算复杂度。在学习阶段,使用剪切替代技术对复杂度进行微调,以保证学习的顺利进行。仿真结果验证了所提出的方法在实现更高的平均数据传输速率和确保服务质量(QoS)满意度方面优于现有的分散式系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimal resource assignment and mode selection for vehicular communication using proximal on-policy scheme

Vehicle-to-everything (V2X) communication is essential in 5G and upcoming networks as it enables seamless interaction between vehicles and infrastructure, ensuring the reliable transmission of critical and time-sensitive data. Challenges like unstable communication in highly mobile vehicular networks, limited channel state information, high transmission overhead, and significant communication costs hinder vehicle-to-vehicle (V2V) communication. To tackle these issues, a unified approach utilizing distributed deep reinforcement learning is proposed to enhance the overall network performance while meeting the quality of service (QoS), latency, and rate requirements. Recognizing the complexity of this NP-hard, non-convex problem, a machine learning framework based on the Markov decision process (MDP) is adopted for a robust strategy. This framework facilitates the formulation of a reward function and the selection of optimal actions with certainty. Furthermore, a spectrum-based allocation framework employing multi-agent deep reinforcement learning (MADRL) is confidently introduced. The deep deterministic policy gradient (DDPG) within this framework enables the exchange of historical data globally during the primary learning phase, effectively removing the need for signal interaction and manual intervention in optimizing system efficiency. The data transmission policy follows an augmented online policy scheme, known as the proximal online policy scheme (POPS), which confidently reduces the computational complexity during the learning process. The complexity is marginally adjusted using the clipping substitute technique with assurance in the learning phase. Simulation results validate that the proposed method outperforms existing decentralized systems in achieving a higher average data transmission rate and ensuring quality of service (QoS) satisfaction confidently.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
期刊最新文献
Safe operations of a reach stacker by computer vision in an automated container terminal Letter to editor: ICMAACS and history of its mathematical awards Parameter-based RNN micro-interface inversion model for wet friction components morphology A novel generalized nonlinear fractional grey Bernoulli model and its application State of charge estimation of lithium batteries in wide temperature range based on MSIABC-AEKF algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1