Wenhu Fan , Ping Yang , Shengfu Wang , Zhaohui (Joey) Yang , Xiaofeng Fan , Yong Tao
{"title":"通过三维 X 射线计算机断层扫描和汞侵入孔隙模拟法研究冻融对粘土孔隙结构的影响","authors":"Wenhu Fan , Ping Yang , Shengfu Wang , Zhaohui (Joey) Yang , Xiaofeng Fan , Yong Tao","doi":"10.1016/j.coldregions.2024.104276","DOIUrl":null,"url":null,"abstract":"<div><p>Thaw settlement of soils is a comprehensive reflection of multiscale pore changes induced by freeze-thaw (F-T). In this study, three-dimensional (3D) X-ray computed tomography (CT) tests were utilized to investigate alterations in the macropore and mesopore structures, while mercury intrusion porosimetry (MIP) tests were used to examine the micropore structure in clay due to F-T influenced by different freezing temperatures without water supply. The maximum increase in CT transverse-sectional porosity after F-T can be used to identify where ice lenses formed most abundantly in the clay after thawing, and the diameter and horizontal orientation of the macropores exhibit the most significant increase after thawing. As the freezing temperature decreases, the location becomes farther from the cold end. Macropores are significantly more affected by F-T compared to mesopores, and changes in macropore porosity and diameter can be attributed to moisture migration and freezing shrinkage, with lower freezing temperatures amplifying the influence of freezing shrinkage and weakening the impact of moisture migration. Considering the small size of samples, the MIP porosity was defined to analyze the effects of F-T on the micropores. Compared to the CT volumeratic porosity, the influence of F-T on micropore porosity is less significant. As the freezing temperature decreases, the changes in micropore diameter become smaller. Overall, the lower the freezing temperature, the smaller the changes in macropores, mesopores and micropores. Lastly, a method is proposed for predicting the mass porosity based on the CT volumetric porosity and MIP porosity. This study demonstrates that changes in soil mass porosity reflect a comprehensive representation of multiscale pore variations and provides important theoretical support for thaw settlement control in artificial freezing engineering.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"225 ","pages":"Article 104276"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Freeze-thaw effects on pore structure of clay by 3D X-ray computed tomography and mercury intrusion porosimetry\",\"authors\":\"Wenhu Fan , Ping Yang , Shengfu Wang , Zhaohui (Joey) Yang , Xiaofeng Fan , Yong Tao\",\"doi\":\"10.1016/j.coldregions.2024.104276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thaw settlement of soils is a comprehensive reflection of multiscale pore changes induced by freeze-thaw (F-T). In this study, three-dimensional (3D) X-ray computed tomography (CT) tests were utilized to investigate alterations in the macropore and mesopore structures, while mercury intrusion porosimetry (MIP) tests were used to examine the micropore structure in clay due to F-T influenced by different freezing temperatures without water supply. The maximum increase in CT transverse-sectional porosity after F-T can be used to identify where ice lenses formed most abundantly in the clay after thawing, and the diameter and horizontal orientation of the macropores exhibit the most significant increase after thawing. As the freezing temperature decreases, the location becomes farther from the cold end. Macropores are significantly more affected by F-T compared to mesopores, and changes in macropore porosity and diameter can be attributed to moisture migration and freezing shrinkage, with lower freezing temperatures amplifying the influence of freezing shrinkage and weakening the impact of moisture migration. Considering the small size of samples, the MIP porosity was defined to analyze the effects of F-T on the micropores. Compared to the CT volumeratic porosity, the influence of F-T on micropore porosity is less significant. As the freezing temperature decreases, the changes in micropore diameter become smaller. Overall, the lower the freezing temperature, the smaller the changes in macropores, mesopores and micropores. Lastly, a method is proposed for predicting the mass porosity based on the CT volumetric porosity and MIP porosity. This study demonstrates that changes in soil mass porosity reflect a comprehensive representation of multiscale pore variations and provides important theoretical support for thaw settlement control in artificial freezing engineering.</p></div>\",\"PeriodicalId\":10522,\"journal\":{\"name\":\"Cold Regions Science and Technology\",\"volume\":\"225 \",\"pages\":\"Article 104276\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Regions Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165232X24001575\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24001575","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Freeze-thaw effects on pore structure of clay by 3D X-ray computed tomography and mercury intrusion porosimetry
Thaw settlement of soils is a comprehensive reflection of multiscale pore changes induced by freeze-thaw (F-T). In this study, three-dimensional (3D) X-ray computed tomography (CT) tests were utilized to investigate alterations in the macropore and mesopore structures, while mercury intrusion porosimetry (MIP) tests were used to examine the micropore structure in clay due to F-T influenced by different freezing temperatures without water supply. The maximum increase in CT transverse-sectional porosity after F-T can be used to identify where ice lenses formed most abundantly in the clay after thawing, and the diameter and horizontal orientation of the macropores exhibit the most significant increase after thawing. As the freezing temperature decreases, the location becomes farther from the cold end. Macropores are significantly more affected by F-T compared to mesopores, and changes in macropore porosity and diameter can be attributed to moisture migration and freezing shrinkage, with lower freezing temperatures amplifying the influence of freezing shrinkage and weakening the impact of moisture migration. Considering the small size of samples, the MIP porosity was defined to analyze the effects of F-T on the micropores. Compared to the CT volumeratic porosity, the influence of F-T on micropore porosity is less significant. As the freezing temperature decreases, the changes in micropore diameter become smaller. Overall, the lower the freezing temperature, the smaller the changes in macropores, mesopores and micropores. Lastly, a method is proposed for predicting the mass porosity based on the CT volumetric porosity and MIP porosity. This study demonstrates that changes in soil mass porosity reflect a comprehensive representation of multiscale pore variations and provides important theoretical support for thaw settlement control in artificial freezing engineering.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.