Zilong Guo , Mei Hong , Yongchui Zhang , Jian Shi , Longxia Qian , Hanlin Li
{"title":"基于滚动动力学和改进型 A* 算法的船舶安全评估和气象航线优化研究","authors":"Zilong Guo , Mei Hong , Yongchui Zhang , Jian Shi , Longxia Qian , Hanlin Li","doi":"10.1016/j.ijnaoe.2024.100605","DOIUrl":null,"url":null,"abstract":"<div><p>With the steady growth of international trade, sea transport has become indispensable, leading to an increase in maritime accidents. The sinking of the Russian Black Sea Fleet flagship, the guided missile cruiser “Moskva,” underscores the critical need for enhanced maritime safety. However, the dynamics of ship stability, particularly under transverse wind and wave conditions, remain unclear. We aimed to explore ship navigation safety by using the Moskva incident as a case study. Specifically, our objective was to investigate the influence of wind and waves on ship stability, calculate the capsizing probability of the vessel, and devise a fast and safe return path to port. We conducted a comprehensive review of existing literature on ship stability and path-planning algorithms. Leveraging this knowledge, we established the dynamics equation under transverse wind and wave conditions and integrated risk and vulnerability indicators to obtain a quantitative sea-area risk zoning map. Additionally, we employed the A* algorithm to plan a path under International Maritime Organization rules restrictions. Our findings reveal insights into ship stability dynamics and the importance of considering environmental factors in navigation safety. We calculated the capsizing probability of Moskva and devised a fast and safe return path to port, highlighting the practical application of our methodology. This study contributes to the understanding of ship navigation safety by addressing the knowledge gap in ship stability dynamics. Our findings underscore the significance of considering environmental factors in navigation safety planning. However, limitations exist in terms of data availability and model accuracy. Future research should explore additional factors impacting ship stability and refine path-planning algorithms for enhanced safety.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100605"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000244/pdfft?md5=78f50c14be213481c96bc258f4167cd8&pid=1-s2.0-S2092678224000244-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Research on safety evaluation and weather routing optimization of ship based on roll dynamics and improved A* algorithm\",\"authors\":\"Zilong Guo , Mei Hong , Yongchui Zhang , Jian Shi , Longxia Qian , Hanlin Li\",\"doi\":\"10.1016/j.ijnaoe.2024.100605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the steady growth of international trade, sea transport has become indispensable, leading to an increase in maritime accidents. The sinking of the Russian Black Sea Fleet flagship, the guided missile cruiser “Moskva,” underscores the critical need for enhanced maritime safety. However, the dynamics of ship stability, particularly under transverse wind and wave conditions, remain unclear. We aimed to explore ship navigation safety by using the Moskva incident as a case study. Specifically, our objective was to investigate the influence of wind and waves on ship stability, calculate the capsizing probability of the vessel, and devise a fast and safe return path to port. We conducted a comprehensive review of existing literature on ship stability and path-planning algorithms. Leveraging this knowledge, we established the dynamics equation under transverse wind and wave conditions and integrated risk and vulnerability indicators to obtain a quantitative sea-area risk zoning map. Additionally, we employed the A* algorithm to plan a path under International Maritime Organization rules restrictions. Our findings reveal insights into ship stability dynamics and the importance of considering environmental factors in navigation safety. We calculated the capsizing probability of Moskva and devised a fast and safe return path to port, highlighting the practical application of our methodology. This study contributes to the understanding of ship navigation safety by addressing the knowledge gap in ship stability dynamics. Our findings underscore the significance of considering environmental factors in navigation safety planning. However, limitations exist in terms of data availability and model accuracy. Future research should explore additional factors impacting ship stability and refine path-planning algorithms for enhanced safety.</p></div>\",\"PeriodicalId\":14160,\"journal\":{\"name\":\"International Journal of Naval Architecture and Ocean Engineering\",\"volume\":\"16 \",\"pages\":\"Article 100605\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2092678224000244/pdfft?md5=78f50c14be213481c96bc258f4167cd8&pid=1-s2.0-S2092678224000244-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Naval Architecture and Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2092678224000244\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000244","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Research on safety evaluation and weather routing optimization of ship based on roll dynamics and improved A* algorithm
With the steady growth of international trade, sea transport has become indispensable, leading to an increase in maritime accidents. The sinking of the Russian Black Sea Fleet flagship, the guided missile cruiser “Moskva,” underscores the critical need for enhanced maritime safety. However, the dynamics of ship stability, particularly under transverse wind and wave conditions, remain unclear. We aimed to explore ship navigation safety by using the Moskva incident as a case study. Specifically, our objective was to investigate the influence of wind and waves on ship stability, calculate the capsizing probability of the vessel, and devise a fast and safe return path to port. We conducted a comprehensive review of existing literature on ship stability and path-planning algorithms. Leveraging this knowledge, we established the dynamics equation under transverse wind and wave conditions and integrated risk and vulnerability indicators to obtain a quantitative sea-area risk zoning map. Additionally, we employed the A* algorithm to plan a path under International Maritime Organization rules restrictions. Our findings reveal insights into ship stability dynamics and the importance of considering environmental factors in navigation safety. We calculated the capsizing probability of Moskva and devised a fast and safe return path to port, highlighting the practical application of our methodology. This study contributes to the understanding of ship navigation safety by addressing the knowledge gap in ship stability dynamics. Our findings underscore the significance of considering environmental factors in navigation safety planning. However, limitations exist in terms of data availability and model accuracy. Future research should explore additional factors impacting ship stability and refine path-planning algorithms for enhanced safety.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.