Huikun Yao , Xiaoqiang Liu , Maotian Li , Weihua Li , Yan Song , Zijie Tan , Wenyan Zhang , Dan Peng , Yan Liu , Jing Chen , Said A. Shetaia
{"title":"台风对长江口悬浮泥沙浓度、河床侵蚀和泥沙输移的影响","authors":"Huikun Yao , Xiaoqiang Liu , Maotian Li , Weihua Li , Yan Song , Zijie Tan , Wenyan Zhang , Dan Peng , Yan Liu , Jing Chen , Said A. Shetaia","doi":"10.1016/j.margeo.2024.107357","DOIUrl":null,"url":null,"abstract":"<div><p>Annually 5–6 typhoons strike the Yangtze Estuary (YE) as extreme events. However, their high energy and importance for sediment transportation and geomorphic changes are still not fully understood. In this study, high-resolution observations of wind, wave, flow velocity, and suspended sediment concentration (SSC) at two in-situ stations were carried out during the 2022 Hinnamnor typhoon. Additionally, we simulated the change in SSC, estuarine bed erosion/deposition, and flow and sediment transport with and without a typhoon in the YE using MIKE3 numerical model. The findings revealed that the Hinnamnor typhoon-induced waves increased the SSC of the turbidity maximum zone (TMZ) by a factor of 5.6 times (maximum is 2.8 kg/m<sup>3</sup>). The TMZ area also extended by 2.68 times (maximum is 7880km<sup>2</sup>, 70.4% of YE) in the YE. Moreover, the typhoon caused a dramatic change in sediment transport and bed erosion/deposition in the YE. First, in the delta front area where the mean water depth is >5 m, the typhoon significantly increased the southward flux of residual flow and sediment, causing sediment transport into Hangzhou Bay to abruptly increase 26.3 times (increase of 52 million tons, accounting for 1/3 of the present annual flux of the Yangtze River (150 million tons)) during a single spring-neap period. The net erosional area and volume extended to 6770km<sup>2</sup> (60.4% of YE) and 91.18 × 10<sup>6</sup> m<sup>3</sup>. Second, in the delta shoals (where the mean water depth is <5 m, including east Chongming Shoal, Hengsha Shoal, Jiuduansha Shoal, and east-south Nanhui Shoal), residual flow and sediment flux decreased northward from the typhoon and resulted in the erosion of the shoal. Third, in channels with trumpet-shaped mouths (North Branch (NB), North Channel (NC) and South Passage (SP), except for North Passage (NP)), the upward flux of residual flow and sediment increased due to the typhoon, resulting in bed deposition in these channels (NB, NC and SP). This study highlights the important influence of typhoons on flow and sediment transport and bed erosion in estuarine areas.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107357"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of typhoon on suspended sediment concentration, bed erosion and sediment transport in the Yangtze Estuary\",\"authors\":\"Huikun Yao , Xiaoqiang Liu , Maotian Li , Weihua Li , Yan Song , Zijie Tan , Wenyan Zhang , Dan Peng , Yan Liu , Jing Chen , Said A. Shetaia\",\"doi\":\"10.1016/j.margeo.2024.107357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Annually 5–6 typhoons strike the Yangtze Estuary (YE) as extreme events. However, their high energy and importance for sediment transportation and geomorphic changes are still not fully understood. In this study, high-resolution observations of wind, wave, flow velocity, and suspended sediment concentration (SSC) at two in-situ stations were carried out during the 2022 Hinnamnor typhoon. Additionally, we simulated the change in SSC, estuarine bed erosion/deposition, and flow and sediment transport with and without a typhoon in the YE using MIKE3 numerical model. The findings revealed that the Hinnamnor typhoon-induced waves increased the SSC of the turbidity maximum zone (TMZ) by a factor of 5.6 times (maximum is 2.8 kg/m<sup>3</sup>). The TMZ area also extended by 2.68 times (maximum is 7880km<sup>2</sup>, 70.4% of YE) in the YE. Moreover, the typhoon caused a dramatic change in sediment transport and bed erosion/deposition in the YE. First, in the delta front area where the mean water depth is >5 m, the typhoon significantly increased the southward flux of residual flow and sediment, causing sediment transport into Hangzhou Bay to abruptly increase 26.3 times (increase of 52 million tons, accounting for 1/3 of the present annual flux of the Yangtze River (150 million tons)) during a single spring-neap period. The net erosional area and volume extended to 6770km<sup>2</sup> (60.4% of YE) and 91.18 × 10<sup>6</sup> m<sup>3</sup>. Second, in the delta shoals (where the mean water depth is <5 m, including east Chongming Shoal, Hengsha Shoal, Jiuduansha Shoal, and east-south Nanhui Shoal), residual flow and sediment flux decreased northward from the typhoon and resulted in the erosion of the shoal. Third, in channels with trumpet-shaped mouths (North Branch (NB), North Channel (NC) and South Passage (SP), except for North Passage (NP)), the upward flux of residual flow and sediment increased due to the typhoon, resulting in bed deposition in these channels (NB, NC and SP). This study highlights the important influence of typhoons on flow and sediment transport and bed erosion in estuarine areas.</p></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"475 \",\"pages\":\"Article 107357\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322724001415\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724001415","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of typhoon on suspended sediment concentration, bed erosion and sediment transport in the Yangtze Estuary
Annually 5–6 typhoons strike the Yangtze Estuary (YE) as extreme events. However, their high energy and importance for sediment transportation and geomorphic changes are still not fully understood. In this study, high-resolution observations of wind, wave, flow velocity, and suspended sediment concentration (SSC) at two in-situ stations were carried out during the 2022 Hinnamnor typhoon. Additionally, we simulated the change in SSC, estuarine bed erosion/deposition, and flow and sediment transport with and without a typhoon in the YE using MIKE3 numerical model. The findings revealed that the Hinnamnor typhoon-induced waves increased the SSC of the turbidity maximum zone (TMZ) by a factor of 5.6 times (maximum is 2.8 kg/m3). The TMZ area also extended by 2.68 times (maximum is 7880km2, 70.4% of YE) in the YE. Moreover, the typhoon caused a dramatic change in sediment transport and bed erosion/deposition in the YE. First, in the delta front area where the mean water depth is >5 m, the typhoon significantly increased the southward flux of residual flow and sediment, causing sediment transport into Hangzhou Bay to abruptly increase 26.3 times (increase of 52 million tons, accounting for 1/3 of the present annual flux of the Yangtze River (150 million tons)) during a single spring-neap period. The net erosional area and volume extended to 6770km2 (60.4% of YE) and 91.18 × 106 m3. Second, in the delta shoals (where the mean water depth is <5 m, including east Chongming Shoal, Hengsha Shoal, Jiuduansha Shoal, and east-south Nanhui Shoal), residual flow and sediment flux decreased northward from the typhoon and resulted in the erosion of the shoal. Third, in channels with trumpet-shaped mouths (North Branch (NB), North Channel (NC) and South Passage (SP), except for North Passage (NP)), the upward flux of residual flow and sediment increased due to the typhoon, resulting in bed deposition in these channels (NB, NC and SP). This study highlights the important influence of typhoons on flow and sediment transport and bed erosion in estuarine areas.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.