Eric Guiltinan, Javier E. Santos, Prakash Purswani, Jeffrey D. Hyman
{"title":"pySimFrac:用于合成断裂生成和分析的 Python 库","authors":"Eric Guiltinan, Javier E. Santos, Prakash Purswani, Jeffrey D. Hyman","doi":"10.1016/j.cageo.2024.105665","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce <span>pySimFrac</span> , an open-source python library for generating 3-D synthetic fracture realizations, integrating with fluid simulators, and performing analysis. <span>pySimFrac</span> allows the user to specify one of three fracture generation techniques (Box, Gaussian, or Spectral) and perform statistical analysis including the autocorrelation, moments, and probability density functions of the fracture surfaces and aperture. This analysis and accessibility of a python library allows the user to create realistic fracture realizations and vary properties of interest. In addition, <span>pySimFrac</span> includes integration examples to two different pore-scale simulators and the discrete fracture network simulator, dfnWorks. The capabilities developed in this work provides opportunity for quick and smooth adoption and implementation by the wider scientific community for accurate characterization of fluid transport in geologic media. We present <span>pySimFrac</span> along with integration examples and discuss the ability to extend <span>pySimFrac</span> from a single complex fracture to complex fracture networks.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"191 ","pages":"Article 105665"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098300424001481/pdfft?md5=5d27e62672e4e49e6eb5ec852f09ad80&pid=1-s2.0-S0098300424001481-main.pdf","citationCount":"0","resultStr":"{\"title\":\"pySimFrac: A Python library for synthetic fracture generation and analysis\",\"authors\":\"Eric Guiltinan, Javier E. Santos, Prakash Purswani, Jeffrey D. Hyman\",\"doi\":\"10.1016/j.cageo.2024.105665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce <span>pySimFrac</span> , an open-source python library for generating 3-D synthetic fracture realizations, integrating with fluid simulators, and performing analysis. <span>pySimFrac</span> allows the user to specify one of three fracture generation techniques (Box, Gaussian, or Spectral) and perform statistical analysis including the autocorrelation, moments, and probability density functions of the fracture surfaces and aperture. This analysis and accessibility of a python library allows the user to create realistic fracture realizations and vary properties of interest. In addition, <span>pySimFrac</span> includes integration examples to two different pore-scale simulators and the discrete fracture network simulator, dfnWorks. The capabilities developed in this work provides opportunity for quick and smooth adoption and implementation by the wider scientific community for accurate characterization of fluid transport in geologic media. We present <span>pySimFrac</span> along with integration examples and discuss the ability to extend <span>pySimFrac</span> from a single complex fracture to complex fracture networks.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"191 \",\"pages\":\"Article 105665\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001481/pdfft?md5=5d27e62672e4e49e6eb5ec852f09ad80&pid=1-s2.0-S0098300424001481-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001481\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001481","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
pySimFrac: A Python library for synthetic fracture generation and analysis
In this paper, we introduce pySimFrac , an open-source python library for generating 3-D synthetic fracture realizations, integrating with fluid simulators, and performing analysis. pySimFrac allows the user to specify one of three fracture generation techniques (Box, Gaussian, or Spectral) and perform statistical analysis including the autocorrelation, moments, and probability density functions of the fracture surfaces and aperture. This analysis and accessibility of a python library allows the user to create realistic fracture realizations and vary properties of interest. In addition, pySimFrac includes integration examples to two different pore-scale simulators and the discrete fracture network simulator, dfnWorks. The capabilities developed in this work provides opportunity for quick and smooth adoption and implementation by the wider scientific community for accurate characterization of fluid transport in geologic media. We present pySimFrac along with integration examples and discuss the ability to extend pySimFrac from a single complex fracture to complex fracture networks.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.