Riccardo Miranda , Tommaso Scalici , Francesco Di Franco , Monica Santamaria , Antonino Valenza
{"title":"在航空航天应用的纤维金属层压板中通过电化学处理提高 PEEK 复合材料与钛的界面性能","authors":"Riccardo Miranda , Tommaso Scalici , Francesco Di Franco , Monica Santamaria , Antonino Valenza","doi":"10.1016/j.ijadhadh.2024.103767","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, different surface treatments were investigated to improve the adhesion between grade 5 titanium alloy and carbon fibre-reinforced PEEK composites for aerospace applications. Three types of processes were compared: mechanical treatment (MT), carried out by sander with #80 grit sandpaper, chemical treatment, using a silane coupling agent (SIL) and electrochemical treatment, performed by anodic oxidation. The latter was performed by using an ethylene glycol solution composed of 0.5%wt of ammonium fluoride (NH<sub>4</sub>F) and variable volume content of deionized water: 5%v/v, 20 % v/v, 50 % v/v. The ammonium fluoride content was fixed, while the ethylene glycol percentage depend on the variation of water volume. Two values of electric potential were evaluated: 30V and 50V. Finally, for each potential and water content, three different anodizing times were studied: 10 min, 30 min, and 60 min. Morphology studies were performed through Scanning electron microscopy to evaluate how the anodizing parameters could affect the shape of the nanotubes (NTs) layers. Moreover, short beam shear tests were carried out to evaluate the achieved improvement given by the different surface treatments.</p></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"134 ","pages":"Article 103767"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the PEEK composites-titanium interface performances through electrochemical treatment in fibre-metal laminates for aerospace applications\",\"authors\":\"Riccardo Miranda , Tommaso Scalici , Francesco Di Franco , Monica Santamaria , Antonino Valenza\",\"doi\":\"10.1016/j.ijadhadh.2024.103767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, different surface treatments were investigated to improve the adhesion between grade 5 titanium alloy and carbon fibre-reinforced PEEK composites for aerospace applications. Three types of processes were compared: mechanical treatment (MT), carried out by sander with #80 grit sandpaper, chemical treatment, using a silane coupling agent (SIL) and electrochemical treatment, performed by anodic oxidation. The latter was performed by using an ethylene glycol solution composed of 0.5%wt of ammonium fluoride (NH<sub>4</sub>F) and variable volume content of deionized water: 5%v/v, 20 % v/v, 50 % v/v. The ammonium fluoride content was fixed, while the ethylene glycol percentage depend on the variation of water volume. Two values of electric potential were evaluated: 30V and 50V. Finally, for each potential and water content, three different anodizing times were studied: 10 min, 30 min, and 60 min. Morphology studies were performed through Scanning electron microscopy to evaluate how the anodizing parameters could affect the shape of the nanotubes (NTs) layers. Moreover, short beam shear tests were carried out to evaluate the achieved improvement given by the different surface treatments.</p></div>\",\"PeriodicalId\":13732,\"journal\":{\"name\":\"International Journal of Adhesion and Adhesives\",\"volume\":\"134 \",\"pages\":\"Article 103767\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adhesion and Adhesives\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143749624001490\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749624001490","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Enhancing the PEEK composites-titanium interface performances through electrochemical treatment in fibre-metal laminates for aerospace applications
In this work, different surface treatments were investigated to improve the adhesion between grade 5 titanium alloy and carbon fibre-reinforced PEEK composites for aerospace applications. Three types of processes were compared: mechanical treatment (MT), carried out by sander with #80 grit sandpaper, chemical treatment, using a silane coupling agent (SIL) and electrochemical treatment, performed by anodic oxidation. The latter was performed by using an ethylene glycol solution composed of 0.5%wt of ammonium fluoride (NH4F) and variable volume content of deionized water: 5%v/v, 20 % v/v, 50 % v/v. The ammonium fluoride content was fixed, while the ethylene glycol percentage depend on the variation of water volume. Two values of electric potential were evaluated: 30V and 50V. Finally, for each potential and water content, three different anodizing times were studied: 10 min, 30 min, and 60 min. Morphology studies were performed through Scanning electron microscopy to evaluate how the anodizing parameters could affect the shape of the nanotubes (NTs) layers. Moreover, short beam shear tests were carried out to evaluate the achieved improvement given by the different surface treatments.
期刊介绍:
The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.