利用 PBEsol、TB-mBJ 和 SCAN 函数进行 DFT 研究,探索卤化物包晶 AgXF 3 ( X = Be , Ca ) $$ {\mathrm{AgXF}}_3\left(\mathrm{X}=\mathrm{Be},\mathrm{Ca}\right) $$ 的结构、弹性、机械、声子、电子和光学特性

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2024-07-17 DOI:10.1002/qua.27447
H. Bushra Munir, A. Afaq, Abdelaziz Gassoumi, Muhammad Ahmed, Abu Bakar
{"title":"利用 PBEsol、TB-mBJ 和 SCAN 函数进行 DFT 研究,探索卤化物包晶 AgXF 3 ( X = Be , Ca ) $$ {\\mathrm{AgXF}}_3\\left(\\mathrm{X}=\\mathrm{Be},\\mathrm{Ca}\\right) $$ 的结构、弹性、机械、声子、电子和光学特性","authors":"H. Bushra Munir,&nbsp;A. Afaq,&nbsp;Abdelaziz Gassoumi,&nbsp;Muhammad Ahmed,&nbsp;Abu Bakar","doi":"10.1002/qua.27447","DOIUrl":null,"url":null,"abstract":"<p>First principles calculations have been performed using full potential linearized augmented plane wave, FP-LAPW, within Wien2k to elucidate structural, elastic, mechanical, phonon, electronic and optical properties of lead free halide perovskites <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgXF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>X</mi>\n <mo>=</mo>\n <mi>Be</mi>\n <mo>,</mo>\n <mi>Ca</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {\\mathrm{AgXF}}_3\\left(\\mathrm{X}=\\mathrm{Be},\\mathrm{Ca}\\right) $$</annotation>\n </semantics></math>. The energy volume curve fitting is used to examine structural stability. For structural optimization and mechanical properties, we employed Perdew–Burke–Ernzerhof generalized gradient approximation and PBEsol, revised for solids, exchange and correlation functional. The optimized lattice constant of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgBeF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgBeF}}_3 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgCaF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgCaF}}_3 $$</annotation>\n </semantics></math> is 3.631 and 4.349Å. The elastic constant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>C</mtext>\n </mrow>\n <mrow>\n <mn>11</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{C}}_{11} $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>C</mtext>\n </mrow>\n <mrow>\n <mn>12</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{C}}_{12} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>C</mtext>\n </mrow>\n <mrow>\n <mn>44</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{C}}_{44} $$</annotation>\n </semantics></math> are computed to extract different mechanical parameters like Poisson's ratio, Pugh's ratio, bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Cauchy pressure and shear constant. The mechanical parameters exhibit greater structural, mechanical and dynamical stability of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgBeF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgBeF}}_3 $$</annotation>\n </semantics></math> than <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgCaF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgCaF}}_3 $$</annotation>\n </semantics></math>. The electronic and optical properties are calculated by using TB-mBJ and SCAN potentials in addition to PBEsol. The electronic band gap of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgBeF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgBeF}}_3 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgCaF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgCaF}}_3 $$</annotation>\n </semantics></math> is 4.71 and 6.01 eV with TB-mBJ and both perovskites are indirect band gap materials. The optical response of these perovskites against wide range of incident electromagnetic radiation is assessed by calculating absorption, reflection, optical conductivity, dielectric constant, energy loss function and refraction. Strong absorption, high optical conductivity and low reflectivity indicates that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgBeF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgBeF}}_3 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgCaF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgCaF}}_3 $$</annotation>\n </semantics></math> are promising materials for photovoltaic applications.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT study to explore structural, elastic, mechanical, phonon, electronic and optical properties of halide perovskites \\n \\n \\n \\n \\n AgXF\\n \\n \\n 3\\n \\n \\n (\\n X\\n =\\n Be\\n ,\\n Ca\\n )\\n \\n $$ {\\\\mathrm{AgXF}}_3\\\\left(\\\\mathrm{X}=\\\\mathrm{Be},\\\\mathrm{Ca}\\\\right) $$\\n with PBEsol, TB-mBJ and SCAN functionals\",\"authors\":\"H. Bushra Munir,&nbsp;A. Afaq,&nbsp;Abdelaziz Gassoumi,&nbsp;Muhammad Ahmed,&nbsp;Abu Bakar\",\"doi\":\"10.1002/qua.27447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>First principles calculations have been performed using full potential linearized augmented plane wave, FP-LAPW, within Wien2k to elucidate structural, elastic, mechanical, phonon, electronic and optical properties of lead free halide perovskites <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgXF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>=</mo>\\n <mi>Be</mi>\\n <mo>,</mo>\\n <mi>Ca</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgXF}}_3\\\\left(\\\\mathrm{X}=\\\\mathrm{Be},\\\\mathrm{Ca}\\\\right) $$</annotation>\\n </semantics></math>. The energy volume curve fitting is used to examine structural stability. For structural optimization and mechanical properties, we employed Perdew–Burke–Ernzerhof generalized gradient approximation and PBEsol, revised for solids, exchange and correlation functional. The optimized lattice constant of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgBeF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgBeF}}_3 $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgCaF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgCaF}}_3 $$</annotation>\\n </semantics></math> is 3.631 and 4.349Å. The elastic constant <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>C</mtext>\\n </mrow>\\n <mrow>\\n <mn>11</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{C}}_{11} $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>C</mtext>\\n </mrow>\\n <mrow>\\n <mn>12</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{C}}_{12} $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>C</mtext>\\n </mrow>\\n <mrow>\\n <mn>44</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{C}}_{44} $$</annotation>\\n </semantics></math> are computed to extract different mechanical parameters like Poisson's ratio, Pugh's ratio, bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Cauchy pressure and shear constant. The mechanical parameters exhibit greater structural, mechanical and dynamical stability of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgBeF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgBeF}}_3 $$</annotation>\\n </semantics></math> than <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgCaF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgCaF}}_3 $$</annotation>\\n </semantics></math>. The electronic and optical properties are calculated by using TB-mBJ and SCAN potentials in addition to PBEsol. The electronic band gap of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgBeF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgBeF}}_3 $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgCaF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgCaF}}_3 $$</annotation>\\n </semantics></math> is 4.71 and 6.01 eV with TB-mBJ and both perovskites are indirect band gap materials. The optical response of these perovskites against wide range of incident electromagnetic radiation is assessed by calculating absorption, reflection, optical conductivity, dielectric constant, energy loss function and refraction. Strong absorption, high optical conductivity and low reflectivity indicates that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgBeF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgBeF}}_3 $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgCaF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgCaF}}_3 $$</annotation>\\n </semantics></math> are promising materials for photovoltaic applications.</p>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27447\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27447","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在 Wien2k 中使用全电势线性化增强平面波(FP-LAPW)进行了第一性原理计算,以阐明无铅卤化物包晶 AgXF 3 ( X = Be , Ca ) $$ {\mathrm{AgXF}}_3\left(\mathrm{X}=\mathrm{Be},\mathrm{Ca}\right) $$ 的结构、弹性、机械、声子、电子和光学特性。能量体积曲线拟合用于检验结构稳定性。在结构优化和力学性能方面,我们采用了 Perdew-Burke-Ernzerhof 广义梯度近似和 PBEsol,并对固体、交换和相关函数进行了修正。AgBeF 3 $$ {\mathrm{AgBeF}}_3 $$ 和 AgCaF 3 $$ {\mathrm{AgCaF}}_3 $$ 的优化晶格常数分别为 3.631 和 4.349 Å。弹性常数 C 11 $${\mathrm{C}}_{11}$$ , C 12 $$ {\mathrm{C}}_{12}$$ 和 C 44 $$ {\mathrm{C}}_{44}$$ 计算得出不同的力学参数,如泊松比、普氏比、体积模量、剪切模量、杨氏模量、各向异性比、考希压力和剪切常数。力学参数显示 AgBeF 3 $$ {\mathrm{AgBeF}}_3 $$ 比 AgCaF 3 $$ {\mathrm{AgCaF}}_3 $$ 具有更高的结构、力学和动力学稳定性。除了 PBEsol 之外,还使用 TB-mBJ 和 SCAN 电位计算了电子和光学性质。通过 TB-mBJ 计算,AgBeF 3 $$ {\mathrm{AgBeF}}_3 $$ 和 AgCaF 3 $$ {\mathrm{AgCaF}}_3 $$ 的电子带隙分别为 4.71 和 6.01 eV,这两种包晶石都是间接带隙材料。通过计算吸收、反射、光导率、介电常数、能量损失函数和折射率,评估了这些包晶对各种入射电磁辐射的光学响应。强烈的吸收、高光导率和低反射率表明 AgBeF 3 $$ {\mathrm{AgBeF}}_3 $$ 和 AgCaF 3 $$ {\mathrm{AgCaF}}_3 $$ 是很有前途的光伏应用材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A DFT study to explore structural, elastic, mechanical, phonon, electronic and optical properties of halide perovskites AgXF 3 ( X = Be , Ca ) $$ {\mathrm{AgXF}}_3\left(\mathrm{X}=\mathrm{Be},\mathrm{Ca}\right) $$ with PBEsol, TB-mBJ and SCAN functionals

First principles calculations have been performed using full potential linearized augmented plane wave, FP-LAPW, within Wien2k to elucidate structural, elastic, mechanical, phonon, electronic and optical properties of lead free halide perovskites AgXF 3 ( X = Be , Ca ) $$ {\mathrm{AgXF}}_3\left(\mathrm{X}=\mathrm{Be},\mathrm{Ca}\right) $$ . The energy volume curve fitting is used to examine structural stability. For structural optimization and mechanical properties, we employed Perdew–Burke–Ernzerhof generalized gradient approximation and PBEsol, revised for solids, exchange and correlation functional. The optimized lattice constant of AgBeF 3 $$ {\mathrm{AgBeF}}_3 $$ and AgCaF 3 $$ {\mathrm{AgCaF}}_3 $$ is 3.631 and 4.349Å. The elastic constant C 11 $$ {\mathrm{C}}_{11} $$ , C 12 $$ {\mathrm{C}}_{12} $$ and C 44 $$ {\mathrm{C}}_{44} $$ are computed to extract different mechanical parameters like Poisson's ratio, Pugh's ratio, bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Cauchy pressure and shear constant. The mechanical parameters exhibit greater structural, mechanical and dynamical stability of AgBeF 3 $$ {\mathrm{AgBeF}}_3 $$ than AgCaF 3 $$ {\mathrm{AgCaF}}_3 $$ . The electronic and optical properties are calculated by using TB-mBJ and SCAN potentials in addition to PBEsol. The electronic band gap of AgBeF 3 $$ {\mathrm{AgBeF}}_3 $$ and AgCaF 3 $$ {\mathrm{AgCaF}}_3 $$ is 4.71 and 6.01 eV with TB-mBJ and both perovskites are indirect band gap materials. The optical response of these perovskites against wide range of incident electromagnetic radiation is assessed by calculating absorption, reflection, optical conductivity, dielectric constant, energy loss function and refraction. Strong absorption, high optical conductivity and low reflectivity indicates that AgBeF 3 $$ {\mathrm{AgBeF}}_3 $$ and AgCaF 3 $$ {\mathrm{AgCaF}}_3 $$ are promising materials for photovoltaic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Exploring Chlorinated Solvents as Electrolytes for Lithium Metal Batteries: A DFT and MD Study Dihydro-1H-Pyrazoles as Donor Blocks in Donor–Acceptor Chromophores for Electro-Optics: A DFT Study of Hyperpolaizability and Electronic Excitations Evaluating Electronic Properties of Self-Assembled Indium Phosphide Nanomaterials as High-Efficient Solar Cell Generation of Database of Polymer Acceptors and Machine Learning-Assisted Screening of Efficient Candidates DFT Computation, Spectroscopic, Hirshfeld Surface, Docking and Topological Analysis on 2,2,5-Trimethyl-1,3-Dioxane-5-Carboxylic Acid as Potent Anti-Cancer Agent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1