求助PDF
{"title":"利用 PBEsol、TB-mBJ 和 SCAN 函数进行 DFT 研究,探索卤化物包晶 AgXF 3 ( X = Be , Ca ) $$ {\\mathrm{AgXF}}_3\\left(\\mathrm{X}=\\mathrm{Be},\\mathrm{Ca}\\right) $$ 的结构、弹性、机械、声子、电子和光学特性","authors":"H. Bushra Munir, A. Afaq, Abdelaziz Gassoumi, Muhammad Ahmed, Abu Bakar","doi":"10.1002/qua.27447","DOIUrl":null,"url":null,"abstract":"<p>First principles calculations have been performed using full potential linearized augmented plane wave, FP-LAPW, within Wien2k to elucidate structural, elastic, mechanical, phonon, electronic and optical properties of lead free halide perovskites <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgXF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>X</mi>\n <mo>=</mo>\n <mi>Be</mi>\n <mo>,</mo>\n <mi>Ca</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {\\mathrm{AgXF}}_3\\left(\\mathrm{X}=\\mathrm{Be},\\mathrm{Ca}\\right) $$</annotation>\n </semantics></math>. The energy volume curve fitting is used to examine structural stability. For structural optimization and mechanical properties, we employed Perdew–Burke–Ernzerhof generalized gradient approximation and PBEsol, revised for solids, exchange and correlation functional. The optimized lattice constant of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgBeF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgBeF}}_3 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgCaF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgCaF}}_3 $$</annotation>\n </semantics></math> is 3.631 and 4.349Å. The elastic constant <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>C</mtext>\n </mrow>\n <mrow>\n <mn>11</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{C}}_{11} $$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>C</mtext>\n </mrow>\n <mrow>\n <mn>12</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{C}}_{12} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>C</mtext>\n </mrow>\n <mrow>\n <mn>44</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{C}}_{44} $$</annotation>\n </semantics></math> are computed to extract different mechanical parameters like Poisson's ratio, Pugh's ratio, bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Cauchy pressure and shear constant. The mechanical parameters exhibit greater structural, mechanical and dynamical stability of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgBeF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgBeF}}_3 $$</annotation>\n </semantics></math> than <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgCaF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgCaF}}_3 $$</annotation>\n </semantics></math>. The electronic and optical properties are calculated by using TB-mBJ and SCAN potentials in addition to PBEsol. The electronic band gap of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgBeF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgBeF}}_3 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgCaF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgCaF}}_3 $$</annotation>\n </semantics></math> is 4.71 and 6.01 eV with TB-mBJ and both perovskites are indirect band gap materials. The optical response of these perovskites against wide range of incident electromagnetic radiation is assessed by calculating absorption, reflection, optical conductivity, dielectric constant, energy loss function and refraction. Strong absorption, high optical conductivity and low reflectivity indicates that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgBeF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgBeF}}_3 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>AgCaF</mtext>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{AgCaF}}_3 $$</annotation>\n </semantics></math> are promising materials for photovoltaic applications.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 15","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT study to explore structural, elastic, mechanical, phonon, electronic and optical properties of halide perovskites \\n \\n \\n \\n \\n AgXF\\n \\n \\n 3\\n \\n \\n (\\n X\\n =\\n Be\\n ,\\n Ca\\n )\\n \\n $$ {\\\\mathrm{AgXF}}_3\\\\left(\\\\mathrm{X}=\\\\mathrm{Be},\\\\mathrm{Ca}\\\\right) $$\\n with PBEsol, TB-mBJ and SCAN functionals\",\"authors\":\"H. Bushra Munir, A. Afaq, Abdelaziz Gassoumi, Muhammad Ahmed, Abu Bakar\",\"doi\":\"10.1002/qua.27447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>First principles calculations have been performed using full potential linearized augmented plane wave, FP-LAPW, within Wien2k to elucidate structural, elastic, mechanical, phonon, electronic and optical properties of lead free halide perovskites <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgXF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>=</mo>\\n <mi>Be</mi>\\n <mo>,</mo>\\n <mi>Ca</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgXF}}_3\\\\left(\\\\mathrm{X}=\\\\mathrm{Be},\\\\mathrm{Ca}\\\\right) $$</annotation>\\n </semantics></math>. The energy volume curve fitting is used to examine structural stability. For structural optimization and mechanical properties, we employed Perdew–Burke–Ernzerhof generalized gradient approximation and PBEsol, revised for solids, exchange and correlation functional. The optimized lattice constant of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgBeF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgBeF}}_3 $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgCaF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgCaF}}_3 $$</annotation>\\n </semantics></math> is 3.631 and 4.349Å. The elastic constant <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>C</mtext>\\n </mrow>\\n <mrow>\\n <mn>11</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{C}}_{11} $$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>C</mtext>\\n </mrow>\\n <mrow>\\n <mn>12</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{C}}_{12} $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>C</mtext>\\n </mrow>\\n <mrow>\\n <mn>44</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{C}}_{44} $$</annotation>\\n </semantics></math> are computed to extract different mechanical parameters like Poisson's ratio, Pugh's ratio, bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Cauchy pressure and shear constant. The mechanical parameters exhibit greater structural, mechanical and dynamical stability of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgBeF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgBeF}}_3 $$</annotation>\\n </semantics></math> than <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgCaF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgCaF}}_3 $$</annotation>\\n </semantics></math>. The electronic and optical properties are calculated by using TB-mBJ and SCAN potentials in addition to PBEsol. The electronic band gap of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgBeF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgBeF}}_3 $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgCaF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgCaF}}_3 $$</annotation>\\n </semantics></math> is 4.71 and 6.01 eV with TB-mBJ and both perovskites are indirect band gap materials. The optical response of these perovskites against wide range of incident electromagnetic radiation is assessed by calculating absorption, reflection, optical conductivity, dielectric constant, energy loss function and refraction. Strong absorption, high optical conductivity and low reflectivity indicates that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgBeF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgBeF}}_3 $$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mtext>AgCaF</mtext>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{AgCaF}}_3 $$</annotation>\\n </semantics></math> are promising materials for photovoltaic applications.</p>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"124 15\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27447\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27447","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
引用
批量引用
A DFT study to explore structural, elastic, mechanical, phonon, electronic and optical properties of halide perovskites
AgXF
3
(
X
=
Be
,
Ca
)
$$ {\mathrm{AgXF}}_3\left(\mathrm{X}=\mathrm{Be},\mathrm{Ca}\right) $$
with PBEsol, TB-mBJ and SCAN functionals
First principles calculations have been performed using full potential linearized augmented plane wave, FP-LAPW, within Wien2k to elucidate structural, elastic, mechanical, phonon, electronic and optical properties of lead free halide perovskites
AgXF
3
(
X
=
Be
,
Ca
)
$$ {\mathrm{AgXF}}_3\left(\mathrm{X}=\mathrm{Be},\mathrm{Ca}\right) $$
. The energy volume curve fitting is used to examine structural stability. For structural optimization and mechanical properties, we employed Perdew–Burke–Ernzerhof generalized gradient approximation and PBEsol, revised for solids, exchange and correlation functional. The optimized lattice constant of
AgBeF
3
$$ {\mathrm{AgBeF}}_3 $$
and
AgCaF
3
$$ {\mathrm{AgCaF}}_3 $$
is 3.631 and 4.349Å. The elastic constant
C
11
$$ {\mathrm{C}}_{11} $$
,
C
12
$$ {\mathrm{C}}_{12} $$
and
C
44
$$ {\mathrm{C}}_{44} $$
are computed to extract different mechanical parameters like Poisson's ratio, Pugh's ratio, bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Cauchy pressure and shear constant. The mechanical parameters exhibit greater structural, mechanical and dynamical stability of
AgBeF
3
$$ {\mathrm{AgBeF}}_3 $$
than
AgCaF
3
$$ {\mathrm{AgCaF}}_3 $$
. The electronic and optical properties are calculated by using TB-mBJ and SCAN potentials in addition to PBEsol. The electronic band gap of
AgBeF
3
$$ {\mathrm{AgBeF}}_3 $$
and
AgCaF
3
$$ {\mathrm{AgCaF}}_3 $$
is 4.71 and 6.01 eV with TB-mBJ and both perovskites are indirect band gap materials. The optical response of these perovskites against wide range of incident electromagnetic radiation is assessed by calculating absorption, reflection, optical conductivity, dielectric constant, energy loss function and refraction. Strong absorption, high optical conductivity and low reflectivity indicates that
AgBeF
3
$$ {\mathrm{AgBeF}}_3 $$
and
AgCaF
3
$$ {\mathrm{AgCaF}}_3 $$
are promising materials for photovoltaic applications.