Bo You, Shangdong Shi, Chen Chen, Jiayu Li, Nan Li, Liang Ding
{"title":"优化接触力以增强六足机器人的容错运动稳定性","authors":"Bo You, Shangdong Shi, Chen Chen, Jiayu Li, Nan Li, Liang Ding","doi":"10.1007/s42235-024-00577-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel method for optimizing the contact force of a hexapod robot to enhance its dynamic motion stability when one of its legs fails. The proposed approach aims to improve the Force Angle Stability Margin (FASM) and adapt the foot trajectory through contact force optimization to achieve safe and stable motion on various terrains. The foot force optimization approach is designed to optimize the FASM, a factor rarely considered in existing contact force optimization methods. By formulating the problem of enhancing the motion stability of the hexapod robot as a Quadratic Programming (QP) optimization problem, this approach can effectively address this issue. Simulations of a hexapod robot using a fault-tolerant gait, along with real field experiments, were conducted to validate the effectiveness and feasibility of the contact force optimization approach. The results demonstrate that this approach can be used to design a motion controller for a hexapod robot with a significantly improved motion stability. In summary, the proposed contact force optimization method offers a promising solution for enhancing the motion stability of hexapod robots with single leg failures and has the potential to significantly advance the development of fault-tolerant hexapod robots for various applications.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 5","pages":"2199 - 2214"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact Force Optimization to Enhance Fault-tolerant Motion Stability of a Hexapod Robot\",\"authors\":\"Bo You, Shangdong Shi, Chen Chen, Jiayu Li, Nan Li, Liang Ding\",\"doi\":\"10.1007/s42235-024-00577-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel method for optimizing the contact force of a hexapod robot to enhance its dynamic motion stability when one of its legs fails. The proposed approach aims to improve the Force Angle Stability Margin (FASM) and adapt the foot trajectory through contact force optimization to achieve safe and stable motion on various terrains. The foot force optimization approach is designed to optimize the FASM, a factor rarely considered in existing contact force optimization methods. By formulating the problem of enhancing the motion stability of the hexapod robot as a Quadratic Programming (QP) optimization problem, this approach can effectively address this issue. Simulations of a hexapod robot using a fault-tolerant gait, along with real field experiments, were conducted to validate the effectiveness and feasibility of the contact force optimization approach. The results demonstrate that this approach can be used to design a motion controller for a hexapod robot with a significantly improved motion stability. In summary, the proposed contact force optimization method offers a promising solution for enhancing the motion stability of hexapod robots with single leg failures and has the potential to significantly advance the development of fault-tolerant hexapod robots for various applications.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 5\",\"pages\":\"2199 - 2214\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00577-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00577-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Contact Force Optimization to Enhance Fault-tolerant Motion Stability of a Hexapod Robot
This paper presents a novel method for optimizing the contact force of a hexapod robot to enhance its dynamic motion stability when one of its legs fails. The proposed approach aims to improve the Force Angle Stability Margin (FASM) and adapt the foot trajectory through contact force optimization to achieve safe and stable motion on various terrains. The foot force optimization approach is designed to optimize the FASM, a factor rarely considered in existing contact force optimization methods. By formulating the problem of enhancing the motion stability of the hexapod robot as a Quadratic Programming (QP) optimization problem, this approach can effectively address this issue. Simulations of a hexapod robot using a fault-tolerant gait, along with real field experiments, were conducted to validate the effectiveness and feasibility of the contact force optimization approach. The results demonstrate that this approach can be used to design a motion controller for a hexapod robot with a significantly improved motion stability. In summary, the proposed contact force optimization method offers a promising solution for enhancing the motion stability of hexapod robots with single leg failures and has the potential to significantly advance the development of fault-tolerant hexapod robots for various applications.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.