对Fe-C微电解系统降解苯酚的主要活性物质和促进机制的新认识

Yulong Zou, Haiqian Zhao, Xiaolong Zhang, Zhonghua Wang, Xue Yang, Xing Zhang
{"title":"对Fe-C微电解系统降解苯酚的主要活性物质和促进机制的新认识","authors":"Yulong Zou, Haiqian Zhao, Xiaolong Zhang, Zhonghua Wang, Xue Yang, Xing Zhang","doi":"10.2166/wst.2024.244","DOIUrl":null,"url":null,"abstract":"\n \n The mechanism of phenol degradation by micro-electrolytic systems can be fully understood by evaluating the oxidation of active substances from the two aspects of phenol bond-breaking and mineralization, and the direction of promoting the generation of active substances is pointed out. In this article, the effects of H2O2, O2-•, ·OH and 1O2 in the degradation of phenol were analyzed using phenol and chemical oxygen demand (COD) removal rates as judgment indicators, respectively. And the addition of C6O8H6 to the micro-electrolysis system was adopted to promote the generation of active substances. The experimental results showed that the active substances which played a dominant effect in the process of phenol bond-breaking and mineralization were changed. While 1O2 is dominant in the bond-breaking of phenol, •OH is dominant in the mineralization of phenol. After adding C6O8H6 (1 mmol/L), the removal rates of phenol and COD were increased by 7.35 and 4.85%, respectively. This was attributed to the autoxidation reaction of C6O8H6 and the continuous supply of H+ while reducing Fe3+ to Fe2+. Additionally, the C6O8H6 regulated the reaction pathway to improve the utilization of H2O2. This study provides a new perspective for the understanding of active substances in micro-electrolysis systems.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New understanding of the main active substances and the promotion mechanism in the degradation of phenol by Fe–C micro-electrolysis systems\",\"authors\":\"Yulong Zou, Haiqian Zhao, Xiaolong Zhang, Zhonghua Wang, Xue Yang, Xing Zhang\",\"doi\":\"10.2166/wst.2024.244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The mechanism of phenol degradation by micro-electrolytic systems can be fully understood by evaluating the oxidation of active substances from the two aspects of phenol bond-breaking and mineralization, and the direction of promoting the generation of active substances is pointed out. In this article, the effects of H2O2, O2-•, ·OH and 1O2 in the degradation of phenol were analyzed using phenol and chemical oxygen demand (COD) removal rates as judgment indicators, respectively. And the addition of C6O8H6 to the micro-electrolysis system was adopted to promote the generation of active substances. The experimental results showed that the active substances which played a dominant effect in the process of phenol bond-breaking and mineralization were changed. While 1O2 is dominant in the bond-breaking of phenol, •OH is dominant in the mineralization of phenol. After adding C6O8H6 (1 mmol/L), the removal rates of phenol and COD were increased by 7.35 and 4.85%, respectively. This was attributed to the autoxidation reaction of C6O8H6 and the continuous supply of H+ while reducing Fe3+ to Fe2+. Additionally, the C6O8H6 regulated the reaction pathway to improve the utilization of H2O2. This study provides a new perspective for the understanding of active substances in micro-electrolysis systems.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"1 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从酚键断裂和矿化两个方面评价活性物质的氧化情况,可以全面了解微电解系统降解苯酚的机理,并指出促进活性物质生成的方向。本文分别以苯酚和化学需氧量(COD)去除率为判断指标,分析了H2O2、O2--、-OH和1O2对苯酚降解的影响。并采用在微电解系统中添加 C6O8H6 的方法促进活性物质的生成。实验结果表明,在苯酚断键和矿化过程中起主导作用的活性物质发生了变化。1O2 在苯酚的断键过程中起主导作用,而 -OH 在苯酚的矿化过程中起主导作用。添加 C6O8H6(1 mmol/L)后,苯酚和 COD 的去除率分别提高了 7.35% 和 4.85%。这归因于 C6O8H6 的自氧化反应以及在将 Fe3+ 还原成 Fe2+ 的同时持续供应 H+。此外,C6O8H6 还调节了反应途径,提高了 H2O2 的利用率。这项研究为了解微电解系统中的活性物质提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New understanding of the main active substances and the promotion mechanism in the degradation of phenol by Fe–C micro-electrolysis systems
The mechanism of phenol degradation by micro-electrolytic systems can be fully understood by evaluating the oxidation of active substances from the two aspects of phenol bond-breaking and mineralization, and the direction of promoting the generation of active substances is pointed out. In this article, the effects of H2O2, O2-•, ·OH and 1O2 in the degradation of phenol were analyzed using phenol and chemical oxygen demand (COD) removal rates as judgment indicators, respectively. And the addition of C6O8H6 to the micro-electrolysis system was adopted to promote the generation of active substances. The experimental results showed that the active substances which played a dominant effect in the process of phenol bond-breaking and mineralization were changed. While 1O2 is dominant in the bond-breaking of phenol, •OH is dominant in the mineralization of phenol. After adding C6O8H6 (1 mmol/L), the removal rates of phenol and COD were increased by 7.35 and 4.85%, respectively. This was attributed to the autoxidation reaction of C6O8H6 and the continuous supply of H+ while reducing Fe3+ to Fe2+. Additionally, the C6O8H6 regulated the reaction pathway to improve the utilization of H2O2. This study provides a new perspective for the understanding of active substances in micro-electrolysis systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel approach to integrate CCHP systems with desalination for sustainable energy and water solutions in educational buildings Metal–organic framework-derived carbon-based evaporator for activating persulfate to remove phenol in interfacial solar distillation Optimizing wastewater treatment through artificial intelligence: recent advances and future prospects The role of hyetograph shape and designer subjectivity in the design of a urban drainage system Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1