基于神经网络的迁移学习,从小型数据集预测低温-CMOS 特性

T. Inaba, Yusuke Chiashi, Minoru Ogura, H. Asai, H. Fuketa, H. Oka, S. Iizuka, K. Kato, S. Shitakata, T. Mori
{"title":"基于神经网络的迁移学习,从小型数据集预测低温-CMOS 特性","authors":"T. Inaba, Yusuke Chiashi, Minoru Ogura, H. Asai, H. Fuketa, H. Oka, S. Iizuka, K. Kato, S. Shitakata, T. Mori","doi":"10.35848/1882-0786/ad63f1","DOIUrl":null,"url":null,"abstract":"\n Transfer learning was examined to predict current-voltage (I-V) characteristics of MOSFETs at cryogenic temperatures. An experimental dataset was obtained from approximately 800 silicon-on-insulator MOSFETs using an automated cryogenic wafer prober to pre-train a 3-hidden-layer neural network (NN) model. Transfer learning based on the NN model was then conducted using another small dataset from 2 bulk MOSFETs. The transfer learning NN model predicted more realistic I-V characteristics and threshold voltages than a control NN model trained using only the small dataset. This study demonstrates cryogenic MOSFET characteristics prediction from a small dataset to reduce time and financial costs.","PeriodicalId":503885,"journal":{"name":"Applied Physics Express","volume":"11 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural-network-based transfer learning for predicting cryo-CMOS characteristics from small datasets\",\"authors\":\"T. Inaba, Yusuke Chiashi, Minoru Ogura, H. Asai, H. Fuketa, H. Oka, S. Iizuka, K. Kato, S. Shitakata, T. Mori\",\"doi\":\"10.35848/1882-0786/ad63f1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Transfer learning was examined to predict current-voltage (I-V) characteristics of MOSFETs at cryogenic temperatures. An experimental dataset was obtained from approximately 800 silicon-on-insulator MOSFETs using an automated cryogenic wafer prober to pre-train a 3-hidden-layer neural network (NN) model. Transfer learning based on the NN model was then conducted using another small dataset from 2 bulk MOSFETs. The transfer learning NN model predicted more realistic I-V characteristics and threshold voltages than a control NN model trained using only the small dataset. This study demonstrates cryogenic MOSFET characteristics prediction from a small dataset to reduce time and financial costs.\",\"PeriodicalId\":503885,\"journal\":{\"name\":\"Applied Physics Express\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35848/1882-0786/ad63f1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad63f1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究人员利用迁移学习预测低温条件下 MOSFET 的电流-电压 (I-V) 特性。实验数据集来自约 800 个硅-绝缘体 MOSFET,使用自动低温晶圆探测仪对 3 个隐藏层神经网络 (NN) 模型进行预训练。然后,使用来自 2 块 MOSFET 的另一个小型数据集,在 NN 模型的基础上进行迁移学习。与仅使用小型数据集训练的对照神经网络模型相比,迁移学习神经网络模型预测的 I-V 特性和阈值电压更为真实。这项研究展示了利用小型数据集预测低温 MOSFET 特性的方法,从而减少了时间和财务成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural-network-based transfer learning for predicting cryo-CMOS characteristics from small datasets
Transfer learning was examined to predict current-voltage (I-V) characteristics of MOSFETs at cryogenic temperatures. An experimental dataset was obtained from approximately 800 silicon-on-insulator MOSFETs using an automated cryogenic wafer prober to pre-train a 3-hidden-layer neural network (NN) model. Transfer learning based on the NN model was then conducted using another small dataset from 2 bulk MOSFETs. The transfer learning NN model predicted more realistic I-V characteristics and threshold voltages than a control NN model trained using only the small dataset. This study demonstrates cryogenic MOSFET characteristics prediction from a small dataset to reduce time and financial costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intracellular vacuoles induced by hypo-osmotic stress visualized by coherent anti-Stokes Raman scattering (CARS) spectroscopic imaging Facile preparation of graphene-graphene oxide liquid cells and their application in liquid-phase STEM imaging of Pt atoms Neural-network-based transfer learning for predicting cryo-CMOS characteristics from small datasets Influence of fixed charges and trapped electrons on free electron mobility at 4H-SiC(0001)/SiO2 interfaces with gate oxides annealed in NO or POCl3 Dynamic wide gamut color generation using highly lossy metal-based metal-dielectric-metal structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1