Haopeng Zhang, Hilde Soenen, Georgios Pipintakos, Johan Blom, Ali Zain U. I. Abadeen, Yanjun Qiu, Wim Van den Bergh
{"title":"根据 4 毫米 DSR 测量结果探索沥青中的物理硬化","authors":"Haopeng Zhang, Hilde Soenen, Georgios Pipintakos, Johan Blom, Ali Zain U. I. Abadeen, Yanjun Qiu, Wim Van den Bergh","doi":"10.1617/s11527-024-02427-6","DOIUrl":null,"url":null,"abstract":"<div><p>Physical hardening (PH) is an important factor affecting the low-temperature performance of bitumen. At present, most PH characterizations are performed by the bending beam rheometer. To present an alternative method based on the Dynamic Shear Rheometer (DSR) equipment, this paper explores the possibilities of the 4 mm plate-plate test to investigate PH in bitumen. A variety of binders was selected, differing in their content of natural waxes, in crude origin, and production procedure. An aged sample was also included. The results show that a 20 min equilibrium period is sufficient to stabilize the sample temperature. To evaluate the PH, a time follow-up of 4 h was selected, as after 4 h the change in slope of complex modulus versus time drops below 1%. Further conclusions show that the physical hardening index (PHI) of bitumen is temperature- and frequency-dependent. This PHI is largest at 0 °C and increases when tested at lower frequencies. The non-waxy binder had almost no hardening, while the waxy binders showed evident hardening. Although the presence of wax is an important factor, the PHI of these binders is not directly related to the total wax content, which was determined by differential scanning calorimetry. In conclusion, the findings show that 4 mm DSR tests provide an effective approach to characterize PH of bitumen.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring physical hardening in bitumen based on 4 mm DSR measurements\",\"authors\":\"Haopeng Zhang, Hilde Soenen, Georgios Pipintakos, Johan Blom, Ali Zain U. I. Abadeen, Yanjun Qiu, Wim Van den Bergh\",\"doi\":\"10.1617/s11527-024-02427-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Physical hardening (PH) is an important factor affecting the low-temperature performance of bitumen. At present, most PH characterizations are performed by the bending beam rheometer. To present an alternative method based on the Dynamic Shear Rheometer (DSR) equipment, this paper explores the possibilities of the 4 mm plate-plate test to investigate PH in bitumen. A variety of binders was selected, differing in their content of natural waxes, in crude origin, and production procedure. An aged sample was also included. The results show that a 20 min equilibrium period is sufficient to stabilize the sample temperature. To evaluate the PH, a time follow-up of 4 h was selected, as after 4 h the change in slope of complex modulus versus time drops below 1%. Further conclusions show that the physical hardening index (PHI) of bitumen is temperature- and frequency-dependent. This PHI is largest at 0 °C and increases when tested at lower frequencies. The non-waxy binder had almost no hardening, while the waxy binders showed evident hardening. Although the presence of wax is an important factor, the PHI of these binders is not directly related to the total wax content, which was determined by differential scanning calorimetry. In conclusion, the findings show that 4 mm DSR tests provide an effective approach to characterize PH of bitumen.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02427-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02427-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Exploring physical hardening in bitumen based on 4 mm DSR measurements
Physical hardening (PH) is an important factor affecting the low-temperature performance of bitumen. At present, most PH characterizations are performed by the bending beam rheometer. To present an alternative method based on the Dynamic Shear Rheometer (DSR) equipment, this paper explores the possibilities of the 4 mm plate-plate test to investigate PH in bitumen. A variety of binders was selected, differing in their content of natural waxes, in crude origin, and production procedure. An aged sample was also included. The results show that a 20 min equilibrium period is sufficient to stabilize the sample temperature. To evaluate the PH, a time follow-up of 4 h was selected, as after 4 h the change in slope of complex modulus versus time drops below 1%. Further conclusions show that the physical hardening index (PHI) of bitumen is temperature- and frequency-dependent. This PHI is largest at 0 °C and increases when tested at lower frequencies. The non-waxy binder had almost no hardening, while the waxy binders showed evident hardening. Although the presence of wax is an important factor, the PHI of these binders is not directly related to the total wax content, which was determined by differential scanning calorimetry. In conclusion, the findings show that 4 mm DSR tests provide an effective approach to characterize PH of bitumen.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.