基于投影线和三维点云凸面分析的间隙测量方法

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Science and Technology Pub Date : 2024-07-16 DOI:10.1088/1361-6501/ad63c3
Wei Pan, binfeng jiang, wenming tang, Fupei Wu, shengping li
{"title":"基于投影线和三维点云凸面分析的间隙测量方法","authors":"Wei Pan, binfeng jiang, wenming tang, Fupei Wu, shengping li","doi":"10.1088/1361-6501/ad63c3","DOIUrl":null,"url":null,"abstract":"\n Accurate measurement of the gap between the lower surface of the relay and the ground is critical for ensuring the quality of the finished product. Traditional gap measurement methods have some shortcomings, such as low accuracy, poor robustness, and loss of depth clues in obscured areas. In this study, a novel gap measurement method based on computer vision is proposed, which includes a projection line model based on guided filtering and a 3D surface point cloud model based on a three dimensional plane reference.- The relay gap was measured by calculating the projection lines of the upper and lower surfaces of the gap with an error of ±0.016 mm. A 3D point cloud model captures the key features of the underside of the relay through image processing techniques, and combines convex hull and centroid estimation to construct a three-dimensional reference plane for the gap, which could achieve high-precision, real-time measurement of the gap (with an error less than ±0.0087 mm). The experimental measurement results show that the proposed method is better than the SelfConvNet method, which has a high measurement accuracy and strong anti-interference ability, and an accuracy rate of up to 99.5% in factory relay quality inspection experiments.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gap Measurement Method Based on Projection Lines and Convex Analysis of 3D Points Cloud\",\"authors\":\"Wei Pan, binfeng jiang, wenming tang, Fupei Wu, shengping li\",\"doi\":\"10.1088/1361-6501/ad63c3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Accurate measurement of the gap between the lower surface of the relay and the ground is critical for ensuring the quality of the finished product. Traditional gap measurement methods have some shortcomings, such as low accuracy, poor robustness, and loss of depth clues in obscured areas. In this study, a novel gap measurement method based on computer vision is proposed, which includes a projection line model based on guided filtering and a 3D surface point cloud model based on a three dimensional plane reference.- The relay gap was measured by calculating the projection lines of the upper and lower surfaces of the gap with an error of ±0.016 mm. A 3D point cloud model captures the key features of the underside of the relay through image processing techniques, and combines convex hull and centroid estimation to construct a three-dimensional reference plane for the gap, which could achieve high-precision, real-time measurement of the gap (with an error less than ±0.0087 mm). The experimental measurement results show that the proposed method is better than the SelfConvNet method, which has a high measurement accuracy and strong anti-interference ability, and an accuracy rate of up to 99.5% in factory relay quality inspection experiments.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad63c3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad63c3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

精确测量继电器下表面与地面之间的间隙对于确保成品质量至关重要。传统的间隙测量方法存在一些缺陷,如精度低、鲁棒性差、在模糊区域丢失深度线索等。本研究提出了一种基于计算机视觉的新型间隙测量方法,包括基于引导滤波的投影线模型和基于三维平面参考的三维表面点云模型。三维点云模型通过图像处理技术捕捉继电器底面的关键特征,并结合凸壳和中心点估计构建间隙的三维参考平面,可实现间隙的高精度实时测量(误差小于±0.0087 毫米)。实验测量结果表明,所提出的方法优于 SelfConvNet 方法,测量精度高,抗干扰能力强,在工厂继电器质量检测实验中准确率高达 99.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gap Measurement Method Based on Projection Lines and Convex Analysis of 3D Points Cloud
Accurate measurement of the gap between the lower surface of the relay and the ground is critical for ensuring the quality of the finished product. Traditional gap measurement methods have some shortcomings, such as low accuracy, poor robustness, and loss of depth clues in obscured areas. In this study, a novel gap measurement method based on computer vision is proposed, which includes a projection line model based on guided filtering and a 3D surface point cloud model based on a three dimensional plane reference.- The relay gap was measured by calculating the projection lines of the upper and lower surfaces of the gap with an error of ±0.016 mm. A 3D point cloud model captures the key features of the underside of the relay through image processing techniques, and combines convex hull and centroid estimation to construct a three-dimensional reference plane for the gap, which could achieve high-precision, real-time measurement of the gap (with an error less than ±0.0087 mm). The experimental measurement results show that the proposed method is better than the SelfConvNet method, which has a high measurement accuracy and strong anti-interference ability, and an accuracy rate of up to 99.5% in factory relay quality inspection experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
期刊最新文献
Morphological characterization of concave particle based on convex decomposition TSMDA: intelligent fault diagnosis of rolling bearing with two stage multi-source domain adaptation Precise orbit determination of integrated BDS-3 and LEO satellites with ambiguity fixing under regional ground stations High-accuracy and lightweight weld surface defect detector based on graph convolution decoupling head Gap Measurement Method Based on Projection Lines and Convex Analysis of 3D Points Cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1