平面电化学有机神经形态器件的类组织界面

Daniela Rana, Chihyeong Kim, Meijing Wang, Fabio Cicoira, F. Santoro
{"title":"平面电化学有机神经形态器件的类组织界面","authors":"Daniela Rana, Chihyeong Kim, Meijing Wang, Fabio Cicoira, F. Santoro","doi":"10.1088/2634-4386/ad63c6","DOIUrl":null,"url":null,"abstract":"\n Organic neuromorphic devices are rapidly developing as platforms for computing, automation and biointerfacing. Resembling short- and long-term synaptic plasticity is a key characteristic to create functional neuromorphic interfaces showcasing spiking activity and learning capabilities. This further enables these devices for coupling with biological systems, such as living neuronal cells and ultimately the brain. However, this would require electrochemical neuromorphic organic devices (ENODes) to interface gel-like electrolytes where neurotransmitter can freely diffuse. To this end, we investigated how planar ENODes (electrochemical transistors) with different geometries and based on different PEDOT:PSS formulations can feature short-and long-term plasticity when in contact with diverse tissue-like gel electrolytes containing catecholamine neurotransmitters. We find both the composition of the bulk electrolyte and gate material play a crucial role in diffusion and trapping of cations that ultimately modulate the conductance of the transistor channels. Our work on ENODe-gel coupling could pave the way to effective brain interfacing for computing and neuroelectronic applications.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"50 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tissue-like interfacing of planar electrochemical organic neuromorphic devices\",\"authors\":\"Daniela Rana, Chihyeong Kim, Meijing Wang, Fabio Cicoira, F. Santoro\",\"doi\":\"10.1088/2634-4386/ad63c6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Organic neuromorphic devices are rapidly developing as platforms for computing, automation and biointerfacing. Resembling short- and long-term synaptic plasticity is a key characteristic to create functional neuromorphic interfaces showcasing spiking activity and learning capabilities. This further enables these devices for coupling with biological systems, such as living neuronal cells and ultimately the brain. However, this would require electrochemical neuromorphic organic devices (ENODes) to interface gel-like electrolytes where neurotransmitter can freely diffuse. To this end, we investigated how planar ENODes (electrochemical transistors) with different geometries and based on different PEDOT:PSS formulations can feature short-and long-term plasticity when in contact with diverse tissue-like gel electrolytes containing catecholamine neurotransmitters. We find both the composition of the bulk electrolyte and gate material play a crucial role in diffusion and trapping of cations that ultimately modulate the conductance of the transistor channels. Our work on ENODe-gel coupling could pave the way to effective brain interfacing for computing and neuroelectronic applications.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\"50 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/ad63c6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ad63c6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为计算、自动化和生物界面的平台,有机神经形态设备正在迅速发展。类似于短期和长期突触可塑性是创建功能性神经形态界面的一个关键特征,可展示尖峰活动和学习能力。这进一步使这些设备能够与生物系统(如活体神经元细胞,最终与大脑)耦合。然而,这需要电化学神经形态有机器件(ENODes)与凝胶状电解质对接,使神经递质能够自由扩散。为此,我们研究了不同几何形状、基于不同 PEDOT:PSS 配方的平面 ENODes(电化学晶体管)在与含有儿茶酚胺神经递质的各种组织类凝胶电解质接触时,如何实现短期和长期可塑性。我们发现,主体电解质和栅极材料的成分在阳离子的扩散和捕获中起着至关重要的作用,而阳离子最终会调节晶体管通道的电导。我们在ENODe-凝胶耦合方面的研究可以为计算和神经电子应用的有效脑接口铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tissue-like interfacing of planar electrochemical organic neuromorphic devices
Organic neuromorphic devices are rapidly developing as platforms for computing, automation and biointerfacing. Resembling short- and long-term synaptic plasticity is a key characteristic to create functional neuromorphic interfaces showcasing spiking activity and learning capabilities. This further enables these devices for coupling with biological systems, such as living neuronal cells and ultimately the brain. However, this would require electrochemical neuromorphic organic devices (ENODes) to interface gel-like electrolytes where neurotransmitter can freely diffuse. To this end, we investigated how planar ENODes (electrochemical transistors) with different geometries and based on different PEDOT:PSS formulations can feature short-and long-term plasticity when in contact with diverse tissue-like gel electrolytes containing catecholamine neurotransmitters. We find both the composition of the bulk electrolyte and gate material play a crucial role in diffusion and trapping of cations that ultimately modulate the conductance of the transistor channels. Our work on ENODe-gel coupling could pave the way to effective brain interfacing for computing and neuroelectronic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
期刊最新文献
Difficulties and approaches in enabling learning-in-memory using crossbar arrays of memristors A liquid optical memristor using photochromic effect and capillary effect Tissue-like interfacing of planar electrochemical organic neuromorphic devices Implementation of two-step gradual reset scheme for enhancing state uniformity of 2D hBN-based memristors for image processing Modulating short-term and long-term plasticity of polymer-based artificial synapses for neuromorphic computing and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1