Jingkai Huang, Liming Yuan, Jianming Liao, Yuetang Wang, Yang Liu, Chen Ji, Cheng Huang, Xiangang Luo
{"title":"实现发射率和温度正向可逆调节的动态红外辐射调节器","authors":"Jingkai Huang, Liming Yuan, Jianming Liao, Yuetang Wang, Yang Liu, Chen Ji, Cheng Huang, Xiangang Luo","doi":"10.1002/admt.202400522","DOIUrl":null,"url":null,"abstract":"The ongoing advancements and growing adoption of infrared detection technology have spurred a tremendous amount of interest in thermal camouflage technology. Various approaches are employed to develop infrared camouflage materials capable of manipulating emissivity or surface temperature. However, the range of thermal radiation regulation implemented by these materials is still somewhat limited. In this paper, a combined emissivity and temperature regulation strategy that integrates a thermoelectric device (TED) and a thermochromic structure is proposed. By utilizing this strategy, it becomes possible to simultaneously control the surface temperature and the emissivity without needing additional complex excitation. As a concept demonstration, large tunabilities of 0.38 for long‐wave infrared (8–14 µm) emittance and 87 °C for surface temperature are observed, resulting in a prominent tunability of the thermal radiation temperature that is 15.4 °C greater than that of a conventional TED with constant emissivity. This work aims to introduce a new design paradigm for future thermal radiation management and camouflage techniques.","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Infrared Radiation Regulator Enabling Positive and Reversible Modulation of Emissivity and Temperature\",\"authors\":\"Jingkai Huang, Liming Yuan, Jianming Liao, Yuetang Wang, Yang Liu, Chen Ji, Cheng Huang, Xiangang Luo\",\"doi\":\"10.1002/admt.202400522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ongoing advancements and growing adoption of infrared detection technology have spurred a tremendous amount of interest in thermal camouflage technology. Various approaches are employed to develop infrared camouflage materials capable of manipulating emissivity or surface temperature. However, the range of thermal radiation regulation implemented by these materials is still somewhat limited. In this paper, a combined emissivity and temperature regulation strategy that integrates a thermoelectric device (TED) and a thermochromic structure is proposed. By utilizing this strategy, it becomes possible to simultaneously control the surface temperature and the emissivity without needing additional complex excitation. As a concept demonstration, large tunabilities of 0.38 for long‐wave infrared (8–14 µm) emittance and 87 °C for surface temperature are observed, resulting in a prominent tunability of the thermal radiation temperature that is 15.4 °C greater than that of a conventional TED with constant emissivity. This work aims to introduce a new design paradigm for future thermal radiation management and camouflage techniques.\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400522\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admt.202400522","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic Infrared Radiation Regulator Enabling Positive and Reversible Modulation of Emissivity and Temperature
The ongoing advancements and growing adoption of infrared detection technology have spurred a tremendous amount of interest in thermal camouflage technology. Various approaches are employed to develop infrared camouflage materials capable of manipulating emissivity or surface temperature. However, the range of thermal radiation regulation implemented by these materials is still somewhat limited. In this paper, a combined emissivity and temperature regulation strategy that integrates a thermoelectric device (TED) and a thermochromic structure is proposed. By utilizing this strategy, it becomes possible to simultaneously control the surface temperature and the emissivity without needing additional complex excitation. As a concept demonstration, large tunabilities of 0.38 for long‐wave infrared (8–14 µm) emittance and 87 °C for surface temperature are observed, resulting in a prominent tunability of the thermal radiation temperature that is 15.4 °C greater than that of a conventional TED with constant emissivity. This work aims to introduce a new design paradigm for future thermal radiation management and camouflage techniques.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.