Mohammad Kaveh, Yousef Abbaspour-Gilandeh, Malgorzata Nowacka, Davood Kalantari, Hany S. El-Mesery, Ebrahim Taghinezhad
{"title":"利用响应面方法分析远红外旋转式烘干机烘干布袋莲的能耗和放能","authors":"Mohammad Kaveh, Yousef Abbaspour-Gilandeh, Malgorzata Nowacka, Davood Kalantari, Hany S. El-Mesery, Ebrahim Taghinezhad","doi":"10.1002/htj.23126","DOIUrl":null,"url":null,"abstract":"<p>Water shows a strong tendency to absorb the energy of wavelengths of 3 and 6 µm, which are in the infrared (IR) range. Therefore, IR dryers are used to dry food and fruits that have a high-water content. Thus, modeling and optimizing energy and exergy parameters of terebinth drying in an IR–rotary drum (RD) dryer were evaluated using the response surface methodology. Independent factors included IR power and rotary rotation speed, and response factors were specific energy consumption (SEC), energy efficiency (EFF), exergy efficiency (EXEFF), specific exergy loss (EXLOSS), and exergy improvement potential (EIP). According to the obtained results, the range of EFF and EXEFF was between 28.93%–9.11% and 0.88%–6.62%, respectively. As IR power and RD speed increased, SEC (123.75–39.21 MJ/kg), EXLOSS (3.97–2.97 MJ/kg), and EIP (3.62–1.009 MJ/kg) decreased, while EFF and EXEFF increased. The results obtained in this study showed that the optimal IR drying power is 616.39 W, and the optimal rotary rotation speed is 13.46 rpm.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4109-4134"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and exergy analysis of drying terebinth in a far infrared-rotary dryer using response surface methodology\",\"authors\":\"Mohammad Kaveh, Yousef Abbaspour-Gilandeh, Malgorzata Nowacka, Davood Kalantari, Hany S. El-Mesery, Ebrahim Taghinezhad\",\"doi\":\"10.1002/htj.23126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Water shows a strong tendency to absorb the energy of wavelengths of 3 and 6 µm, which are in the infrared (IR) range. Therefore, IR dryers are used to dry food and fruits that have a high-water content. Thus, modeling and optimizing energy and exergy parameters of terebinth drying in an IR–rotary drum (RD) dryer were evaluated using the response surface methodology. Independent factors included IR power and rotary rotation speed, and response factors were specific energy consumption (SEC), energy efficiency (EFF), exergy efficiency (EXEFF), specific exergy loss (EXLOSS), and exergy improvement potential (EIP). According to the obtained results, the range of EFF and EXEFF was between 28.93%–9.11% and 0.88%–6.62%, respectively. As IR power and RD speed increased, SEC (123.75–39.21 MJ/kg), EXLOSS (3.97–2.97 MJ/kg), and EIP (3.62–1.009 MJ/kg) decreased, while EFF and EXEFF increased. The results obtained in this study showed that the optimal IR drying power is 616.39 W, and the optimal rotary rotation speed is 13.46 rpm.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"53 8\",\"pages\":\"4109-4134\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Energy and exergy analysis of drying terebinth in a far infrared-rotary dryer using response surface methodology
Water shows a strong tendency to absorb the energy of wavelengths of 3 and 6 µm, which are in the infrared (IR) range. Therefore, IR dryers are used to dry food and fruits that have a high-water content. Thus, modeling and optimizing energy and exergy parameters of terebinth drying in an IR–rotary drum (RD) dryer were evaluated using the response surface methodology. Independent factors included IR power and rotary rotation speed, and response factors were specific energy consumption (SEC), energy efficiency (EFF), exergy efficiency (EXEFF), specific exergy loss (EXLOSS), and exergy improvement potential (EIP). According to the obtained results, the range of EFF and EXEFF was between 28.93%–9.11% and 0.88%–6.62%, respectively. As IR power and RD speed increased, SEC (123.75–39.21 MJ/kg), EXLOSS (3.97–2.97 MJ/kg), and EIP (3.62–1.009 MJ/kg) decreased, while EFF and EXEFF increased. The results obtained in this study showed that the optimal IR drying power is 616.39 W, and the optimal rotary rotation speed is 13.46 rpm.