通过金属硫化物介导的原子捕获合成超高金属密度单原子催化剂

0 CHEMISTRY, MULTIDISCIPLINARY Nature synthesis Pub Date : 2024-07-15 DOI:10.1038/s44160-024-00607-4
Jiangwei Chang, Wen Jing, Xue Yong, Ang Cao, Jingkun Yu, Han Wu, Chengzhang Wan, Siyang Wang, Geoffrey I. N. Waterhouse, Bai Yang, Zhiyong Tang, Xiangfeng Duan, Siyu Lu
{"title":"通过金属硫化物介导的原子捕获合成超高金属密度单原子催化剂","authors":"Jiangwei Chang, Wen Jing, Xue Yong, Ang Cao, Jingkun Yu, Han Wu, Chengzhang Wan, Siyang Wang, Geoffrey I. N. Waterhouse, Bai Yang, Zhiyong Tang, Xiangfeng Duan, Siyu Lu","doi":"10.1038/s44160-024-00607-4","DOIUrl":null,"url":null,"abstract":"Single-atom catalysts (SACs) exhibit exceptional intrinsic activity per metal site, but are often limited by low metal loading, which compromises the overall catalytic performance. Pyrolytic strategies commonly used for synthesizing SACs generally suffer from aggregation at high metal loadings. Here we report a universal synthesis approach for ultrahigh-density metal–nitrogen–carbon (UHDM–N–C) SACs via a metal-sulfide-mediated atomization process. We show that our approach is general for transition, rare-earth and noble metals, achieving 17 SACs with metal loadings >20 wt% (including a loading of 26.9 wt% for Cu, 31.2 wt% for Dy and 33.4 wt% for Pt) at 800 °C, as well as high-entropy quinary and vicenary SACs with ultrahigh metal contents. In situ X-ray diffraction and transmission electron microscopy alongside molecular simulations reveals a dynamic nanoparticle-to-single atom transformation process, including thermally driven decomposition of the metal sulfide and the trapping of liberated metal atoms to form thermodynamically stable M–N–C moieties. Our studies indicate that a high N-doping is crucial for achieving ultrahigh-loading metal atoms and a metal-sulfide-mediated process is essential for avoiding metal aggregation at high loadings. As a demonstration, the metal-loading-dependent activity in electrocatalytic oxygen evolution reaction is demonstrated on SACs with increasing Ni content. Increasing the metal loading of single-atom catalysts (SACs) typically results in aggregation, which can have a detrimental effect on catalytic performance. Now, a nitrogen-doping-assisted atomization approach is reported that transforms metal-sulfide nanoparticles into ultrahigh-density metal–nitrogen–carbon SACs.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of ultrahigh-metal-density single-atom catalysts via metal sulfide-mediated atomic trapping\",\"authors\":\"Jiangwei Chang, Wen Jing, Xue Yong, Ang Cao, Jingkun Yu, Han Wu, Chengzhang Wan, Siyang Wang, Geoffrey I. N. Waterhouse, Bai Yang, Zhiyong Tang, Xiangfeng Duan, Siyu Lu\",\"doi\":\"10.1038/s44160-024-00607-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-atom catalysts (SACs) exhibit exceptional intrinsic activity per metal site, but are often limited by low metal loading, which compromises the overall catalytic performance. Pyrolytic strategies commonly used for synthesizing SACs generally suffer from aggregation at high metal loadings. Here we report a universal synthesis approach for ultrahigh-density metal–nitrogen–carbon (UHDM–N–C) SACs via a metal-sulfide-mediated atomization process. We show that our approach is general for transition, rare-earth and noble metals, achieving 17 SACs with metal loadings >20 wt% (including a loading of 26.9 wt% for Cu, 31.2 wt% for Dy and 33.4 wt% for Pt) at 800 °C, as well as high-entropy quinary and vicenary SACs with ultrahigh metal contents. In situ X-ray diffraction and transmission electron microscopy alongside molecular simulations reveals a dynamic nanoparticle-to-single atom transformation process, including thermally driven decomposition of the metal sulfide and the trapping of liberated metal atoms to form thermodynamically stable M–N–C moieties. Our studies indicate that a high N-doping is crucial for achieving ultrahigh-loading metal atoms and a metal-sulfide-mediated process is essential for avoiding metal aggregation at high loadings. As a demonstration, the metal-loading-dependent activity in electrocatalytic oxygen evolution reaction is demonstrated on SACs with increasing Ni content. Increasing the metal loading of single-atom catalysts (SACs) typically results in aggregation, which can have a detrimental effect on catalytic performance. Now, a nitrogen-doping-assisted atomization approach is reported that transforms metal-sulfide nanoparticles into ultrahigh-density metal–nitrogen–carbon SACs.\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44160-024-00607-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00607-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单原子催化剂(SAC)显示出每个金属位点的特殊内在活性,但往往受限于较低的金属负载量,从而影响整体催化性能。常用于合成 SAC 的热解策略通常会在高金属负载时出现聚集现象。在此,我们报告了一种通过金属硫化物介导的雾化过程合成超高密度金属-氮-碳(UHDM-N-C)SAC 的通用方法。我们的研究结果表明,我们的方法适用于过渡金属、稀土金属和贵金属,在 800 ℃ 的温度下实现了 17 种金属含量为 20 wt%(包括铜含量为 26.9 wt%、镝含量为 31.2 wt%、铂含量为 33.4 wt%)的 SAC,以及具有超高金属含量的高熵二元和三元 SAC。原位 X 射线衍射和透射电子显微镜以及分子模拟揭示了纳米粒子到单原子的动态转变过程,包括金属硫化物的热分解和释放的金属原子的捕获,从而形成热力学上稳定的 M-N-C 分子。我们的研究表明,高 N 掺杂是实现超高金属原子负载的关键,而金属硫化物介导的过程对于避免高负载下的金属聚集至关重要。在镍含量不断增加的 SAC 上,电催化氧进化反应的活性与金属负载有关。增加单原子催化剂(SAC)的金属负载通常会导致聚集,从而对催化性能产生不利影响。现在,一种氮掺杂辅助雾化方法将金属硫化物纳米颗粒转化为超高密度的金属-氮-碳 SAC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of ultrahigh-metal-density single-atom catalysts via metal sulfide-mediated atomic trapping
Single-atom catalysts (SACs) exhibit exceptional intrinsic activity per metal site, but are often limited by low metal loading, which compromises the overall catalytic performance. Pyrolytic strategies commonly used for synthesizing SACs generally suffer from aggregation at high metal loadings. Here we report a universal synthesis approach for ultrahigh-density metal–nitrogen–carbon (UHDM–N–C) SACs via a metal-sulfide-mediated atomization process. We show that our approach is general for transition, rare-earth and noble metals, achieving 17 SACs with metal loadings >20 wt% (including a loading of 26.9 wt% for Cu, 31.2 wt% for Dy and 33.4 wt% for Pt) at 800 °C, as well as high-entropy quinary and vicenary SACs with ultrahigh metal contents. In situ X-ray diffraction and transmission electron microscopy alongside molecular simulations reveals a dynamic nanoparticle-to-single atom transformation process, including thermally driven decomposition of the metal sulfide and the trapping of liberated metal atoms to form thermodynamically stable M–N–C moieties. Our studies indicate that a high N-doping is crucial for achieving ultrahigh-loading metal atoms and a metal-sulfide-mediated process is essential for avoiding metal aggregation at high loadings. As a demonstration, the metal-loading-dependent activity in electrocatalytic oxygen evolution reaction is demonstrated on SACs with increasing Ni content. Increasing the metal loading of single-atom catalysts (SACs) typically results in aggregation, which can have a detrimental effect on catalytic performance. Now, a nitrogen-doping-assisted atomization approach is reported that transforms metal-sulfide nanoparticles into ultrahigh-density metal–nitrogen–carbon SACs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
From furans to pyrroles Predicting enantioselectivity for diverse substrates Electrochemical etherification and amination Polyhedral expansion of closo-hexaboranes Reproducibility in automated chemistry laboratories using computer science abstractions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1