通过将 ADM1 模型反向应用于厌氧消化设备运行,实现基质表征的软传感器

F. Zorrilla, M. C. Sadino-Riquelme, Felipe Hansen, Andrés Donoso-Bravo
{"title":"通过将 ADM1 模型反向应用于厌氧消化设备运行,实现基质表征的软传感器","authors":"F. Zorrilla, M. C. Sadino-Riquelme, Felipe Hansen, Andrés Donoso-Bravo","doi":"10.2166/wst.2024.239","DOIUrl":null,"url":null,"abstract":"\n \n Accurately characterizing the substrate used in anaerobic digestion is crucial for predicting the biogas plant's performance. This issue makes particularly challenging the application of modeling in codigestion plants. In this work, a novel methodology called substrate prediction module (SPM) has been developed and tested, using virtual codigestion data. The SPM aims to estimate the inlet properties of the substrate based on the reverse application of the anaerobic digestion model n1 (ADM1). The results show that, while the SPM can estimate some properties of the substrate based on certain output parameters, there are limitations in accurately determining all required variables.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"45 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft sensor for substrate characterization through the reverse application of the ADM1 model for anaerobic digestion plant operations\",\"authors\":\"F. Zorrilla, M. C. Sadino-Riquelme, Felipe Hansen, Andrés Donoso-Bravo\",\"doi\":\"10.2166/wst.2024.239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Accurately characterizing the substrate used in anaerobic digestion is crucial for predicting the biogas plant's performance. This issue makes particularly challenging the application of modeling in codigestion plants. In this work, a novel methodology called substrate prediction module (SPM) has been developed and tested, using virtual codigestion data. The SPM aims to estimate the inlet properties of the substrate based on the reverse application of the anaerobic digestion model n1 (ADM1). The results show that, while the SPM can estimate some properties of the substrate based on certain output parameters, there are limitations in accurately determining all required variables.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确描述厌氧消化所用基质的特征对于预测沼气厂的性能至关重要。这个问题使得在代码消化设备中应用建模尤其具有挑战性。在这项工作中,利用虚拟代码消化数据,开发并测试了一种称为基质预测模块(SPM)的新方法。SPM 的目的是在反向应用厌氧消化模型 n1 (ADM1) 的基础上估计基质的入口特性。结果表明,虽然 SPM 可以根据某些输出参数估计基质的某些特性,但在准确确定所有所需变量方面存在局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft sensor for substrate characterization through the reverse application of the ADM1 model for anaerobic digestion plant operations
Accurately characterizing the substrate used in anaerobic digestion is crucial for predicting the biogas plant's performance. This issue makes particularly challenging the application of modeling in codigestion plants. In this work, a novel methodology called substrate prediction module (SPM) has been developed and tested, using virtual codigestion data. The SPM aims to estimate the inlet properties of the substrate based on the reverse application of the anaerobic digestion model n1 (ADM1). The results show that, while the SPM can estimate some properties of the substrate based on certain output parameters, there are limitations in accurately determining all required variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel approach to integrate CCHP systems with desalination for sustainable energy and water solutions in educational buildings Metal–organic framework-derived carbon-based evaporator for activating persulfate to remove phenol in interfacial solar distillation Optimizing wastewater treatment through artificial intelligence: recent advances and future prospects The role of hyetograph shape and designer subjectivity in the design of a urban drainage system Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1