Yousif Alqenai, Mo Balapour, Mohammadamin Zooyousefin, Nishant Shresthal, Y. G. Hsuan, Y. Farnam
{"title":"研究烧结平均停留时间对煤灰基轻质骨料工程特性的影响","authors":"Yousif Alqenai, Mo Balapour, Mohammadamin Zooyousefin, Nishant Shresthal, Y. G. Hsuan, Y. Farnam","doi":"10.1111/ijac.14854","DOIUrl":null,"url":null,"abstract":"This study examines the effect of sintering mean residence time (MRT) on the engineering properties and morphological structure of lightweight aggregates (LWA) manufactured from waste coal combustion ash (W‐CCA). A thermodynamics‐based framework was used to tune LWA manufacturing processes. A minimum 35% liquid phase (by mass) and a lower bound viscosity of 100 Pa·s of molten material were found necessary to successfully produce LWA. Using W‐CCA's chemical composition and FactSage thermodynamic modeling, the sintering temperature for LWA was set to 1075°C. Green spherical pellets made using a pelletizer were sintered at MRT of 5.1, 14.8, and 25.9 min to test LWA physical‐mechanical properties including, unit weight, specific gravity, water absorption, and compressive strength. Results indicated that unit weight ranged from 752 to 800 kg/m3, providing desirable lightweight properties. Oven dry specific gravity ranged from 1.24 to 1.43, complying with ENI13055 specification for LWA. Water absorption capacity decreased as MRT extended from 5.1 to 14.8 min and then increased as MRT proceeded from 14.8 to 25.9 min, achieving an average absorption capacity of 26% ± 1.5%. The inverse effect was noticed for compressive strength as LWA sintered with an MRT of 14.8 min demonstrated the highest compressive strength of 14.7 ± 1.8 MPa. The initial decrease in water absorption and increase in compressive strength are attributed to the efficient sintering of the LWA's internal structure. The inverse effect observed as MRT proceeded from 14.8 to 25.9 min was believed to be a result of thermal cracking due to extensive heat exposure. MRT of 14.8 min is recommended for LWA production using the coal ash utilized in this study for its buoyancy characteristics, sufficient absorption capability, and higher compressive strength.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating effects of sintering mean residence time on engineering properties of coal ash‐based lightweight aggregate\",\"authors\":\"Yousif Alqenai, Mo Balapour, Mohammadamin Zooyousefin, Nishant Shresthal, Y. G. Hsuan, Y. Farnam\",\"doi\":\"10.1111/ijac.14854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the effect of sintering mean residence time (MRT) on the engineering properties and morphological structure of lightweight aggregates (LWA) manufactured from waste coal combustion ash (W‐CCA). A thermodynamics‐based framework was used to tune LWA manufacturing processes. A minimum 35% liquid phase (by mass) and a lower bound viscosity of 100 Pa·s of molten material were found necessary to successfully produce LWA. Using W‐CCA's chemical composition and FactSage thermodynamic modeling, the sintering temperature for LWA was set to 1075°C. Green spherical pellets made using a pelletizer were sintered at MRT of 5.1, 14.8, and 25.9 min to test LWA physical‐mechanical properties including, unit weight, specific gravity, water absorption, and compressive strength. Results indicated that unit weight ranged from 752 to 800 kg/m3, providing desirable lightweight properties. Oven dry specific gravity ranged from 1.24 to 1.43, complying with ENI13055 specification for LWA. Water absorption capacity decreased as MRT extended from 5.1 to 14.8 min and then increased as MRT proceeded from 14.8 to 25.9 min, achieving an average absorption capacity of 26% ± 1.5%. The inverse effect was noticed for compressive strength as LWA sintered with an MRT of 14.8 min demonstrated the highest compressive strength of 14.7 ± 1.8 MPa. The initial decrease in water absorption and increase in compressive strength are attributed to the efficient sintering of the LWA's internal structure. The inverse effect observed as MRT proceeded from 14.8 to 25.9 min was believed to be a result of thermal cracking due to extensive heat exposure. MRT of 14.8 min is recommended for LWA production using the coal ash utilized in this study for its buoyancy characteristics, sufficient absorption capability, and higher compressive strength.\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1111/ijac.14854\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14854","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Investigating effects of sintering mean residence time on engineering properties of coal ash‐based lightweight aggregate
This study examines the effect of sintering mean residence time (MRT) on the engineering properties and morphological structure of lightweight aggregates (LWA) manufactured from waste coal combustion ash (W‐CCA). A thermodynamics‐based framework was used to tune LWA manufacturing processes. A minimum 35% liquid phase (by mass) and a lower bound viscosity of 100 Pa·s of molten material were found necessary to successfully produce LWA. Using W‐CCA's chemical composition and FactSage thermodynamic modeling, the sintering temperature for LWA was set to 1075°C. Green spherical pellets made using a pelletizer were sintered at MRT of 5.1, 14.8, and 25.9 min to test LWA physical‐mechanical properties including, unit weight, specific gravity, water absorption, and compressive strength. Results indicated that unit weight ranged from 752 to 800 kg/m3, providing desirable lightweight properties. Oven dry specific gravity ranged from 1.24 to 1.43, complying with ENI13055 specification for LWA. Water absorption capacity decreased as MRT extended from 5.1 to 14.8 min and then increased as MRT proceeded from 14.8 to 25.9 min, achieving an average absorption capacity of 26% ± 1.5%. The inverse effect was noticed for compressive strength as LWA sintered with an MRT of 14.8 min demonstrated the highest compressive strength of 14.7 ± 1.8 MPa. The initial decrease in water absorption and increase in compressive strength are attributed to the efficient sintering of the LWA's internal structure. The inverse effect observed as MRT proceeded from 14.8 to 25.9 min was believed to be a result of thermal cracking due to extensive heat exposure. MRT of 14.8 min is recommended for LWA production using the coal ash utilized in this study for its buoyancy characteristics, sufficient absorption capability, and higher compressive strength.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;