ChatGPT-3.5 和 -4.0 与机械工程:考察 FE 机械工程和本科生考试的成绩

IF 2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Applications in Engineering Education Pub Date : 2024-07-14 DOI:10.1002/cae.22781
Matthew Frenkel, Hebah Emara
{"title":"ChatGPT-3.5 和 -4.0 与机械工程:考察 FE 机械工程和本科生考试的成绩","authors":"Matthew Frenkel, Hebah Emara","doi":"10.1002/cae.22781","DOIUrl":null,"url":null,"abstract":"The launch of Generative Pretrained Transformer (ChatGPT) at the end of 2022 generated large interest in possible applications of artificial intelligence (AI) in science, technology, engineering, and mathematics (STEM) education and among STEM professions. As a result many questions surrounding the capabilities of generative AI tools inside and outside of the classroom have been raised and are starting to be explored. This study examines the capabilities of ChatGPT within the discipline of mechanical engineering. It aims to examine the use cases and pitfalls of such a technology in the classroom and professional settings. ChatGPT was presented with a set of questions from junior‐ and senior‐level mechanical engineering exams provided at a large private university, as well as a set of practice questions for the Fundamentals of Engineering (FE) exam in mechanical engineering. The responses of two ChatGPT models, one free to use and one paid subscription, were analyzed. The paper found that the subscription model (GPT‐4, May 12, 2023) greatly outperformed the free version (GPT‐3.5, May 12, 2023), achieving 76% correct versus 51% correct, but the limitation of text only input on both models makes neither likely to pass the FE exam. The results confirm findings in the literature with regard to types of errors and pitfalls made by ChatGPT. It was found that due to its inconsistency and a tendency to confidently produce incorrect answers, the tool is best suited for users with expert knowledge.","PeriodicalId":50643,"journal":{"name":"Computer Applications in Engineering Education","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChatGPT‐3.5 and ‐4.0 and mechanical engineering: Examining performance on the FE mechanical engineering and undergraduate exams\",\"authors\":\"Matthew Frenkel, Hebah Emara\",\"doi\":\"10.1002/cae.22781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The launch of Generative Pretrained Transformer (ChatGPT) at the end of 2022 generated large interest in possible applications of artificial intelligence (AI) in science, technology, engineering, and mathematics (STEM) education and among STEM professions. As a result many questions surrounding the capabilities of generative AI tools inside and outside of the classroom have been raised and are starting to be explored. This study examines the capabilities of ChatGPT within the discipline of mechanical engineering. It aims to examine the use cases and pitfalls of such a technology in the classroom and professional settings. ChatGPT was presented with a set of questions from junior‐ and senior‐level mechanical engineering exams provided at a large private university, as well as a set of practice questions for the Fundamentals of Engineering (FE) exam in mechanical engineering. The responses of two ChatGPT models, one free to use and one paid subscription, were analyzed. The paper found that the subscription model (GPT‐4, May 12, 2023) greatly outperformed the free version (GPT‐3.5, May 12, 2023), achieving 76% correct versus 51% correct, but the limitation of text only input on both models makes neither likely to pass the FE exam. The results confirm findings in the literature with regard to types of errors and pitfalls made by ChatGPT. It was found that due to its inconsistency and a tendency to confidently produce incorrect answers, the tool is best suited for users with expert knowledge.\",\"PeriodicalId\":50643,\"journal\":{\"name\":\"Computer Applications in Engineering Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Applications in Engineering Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cae.22781\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Applications in Engineering Education","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cae.22781","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

2022 年底推出的生成式预训练转换器(ChatGPT)引起了人们对人工智能(AI)在科学、技术、工程和数学(STEM)教育以及 STEM 专业中可能应用的极大兴趣。因此,围绕生成式人工智能工具在课堂内外的能力提出了许多问题,并开始进行探索。本研究探讨了 ChatGPT 在机械工程学科中的功能。其目的是研究这种技术在课堂和专业环境中的用例和隐患。我们向 ChatGPT 演示了一套来自一所大型私立大学提供的初级和高级机械工程考试的试题,以及一套机械工程基础(FE)考试的练习题。本文分析了两种 ChatGPT 模式(一种是免费使用模式,一种是付费订阅模式)的响应情况。论文发现,订阅模型(GPT-4,2023 年 5 月 12 日)的成绩大大优于免费版本(GPT-3.5,2023 年 5 月 12 日),正确率分别为 76% 和 51%,但由于两种模型都仅限于文本输入,因此都不可能通过 FE 考试。结果证实了文献中关于 ChatGPT 的错误类型和陷阱的研究结果。研究发现,由于 ChatGPT 的不一致性和容易产生错误答案的倾向,该工具最适合具有专业知识的用户使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChatGPT‐3.5 and ‐4.0 and mechanical engineering: Examining performance on the FE mechanical engineering and undergraduate exams
The launch of Generative Pretrained Transformer (ChatGPT) at the end of 2022 generated large interest in possible applications of artificial intelligence (AI) in science, technology, engineering, and mathematics (STEM) education and among STEM professions. As a result many questions surrounding the capabilities of generative AI tools inside and outside of the classroom have been raised and are starting to be explored. This study examines the capabilities of ChatGPT within the discipline of mechanical engineering. It aims to examine the use cases and pitfalls of such a technology in the classroom and professional settings. ChatGPT was presented with a set of questions from junior‐ and senior‐level mechanical engineering exams provided at a large private university, as well as a set of practice questions for the Fundamentals of Engineering (FE) exam in mechanical engineering. The responses of two ChatGPT models, one free to use and one paid subscription, were analyzed. The paper found that the subscription model (GPT‐4, May 12, 2023) greatly outperformed the free version (GPT‐3.5, May 12, 2023), achieving 76% correct versus 51% correct, but the limitation of text only input on both models makes neither likely to pass the FE exam. The results confirm findings in the literature with regard to types of errors and pitfalls made by ChatGPT. It was found that due to its inconsistency and a tendency to confidently produce incorrect answers, the tool is best suited for users with expert knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Applications in Engineering Education
Computer Applications in Engineering Education 工程技术-工程:综合
CiteScore
7.20
自引率
10.30%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Computer Applications in Engineering Education provides a forum for publishing peer-reviewed timely information on the innovative uses of computers, Internet, and software tools in engineering education. Besides new courses and software tools, the CAE journal covers areas that support the integration of technology-based modules in the engineering curriculum and promotes discussion of the assessment and dissemination issues associated with these new implementation methods.
期刊最新文献
Performance of a Large‐Language Model in scoring construction management capstone design projects Issue Information Exploring tubular steady‐state laminar flow reactors with orthogonal collocation Effect of jigsaw‐integrated task‐driven learning on students' motivation, computational thinking, collaborative skills, and programming performance in a high‐school programming course Teaching experience for process identification using first‐order‐plus‐time‐delay models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1