陆空全方位移动机器人的设计与实现

Changlong Ye, Hongyu Wang, Suyang Yu, Xinyu Ma, Ruizhe Zhou
{"title":"陆空全方位移动机器人的设计与实现","authors":"Changlong Ye, Hongyu Wang, Suyang Yu, Xinyu Ma, Ruizhe Zhou","doi":"10.3390/aerospace11070576","DOIUrl":null,"url":null,"abstract":"This paper proposes a new type of omnidirectional mobile robot for land and air, which has three motion modes, combines the motion characteristics of land motion and air flight, has the ability to climb walls, and can be actively deformed to adapt to the working conditions according to the current working environment. The robot incorporates an innovative “rotor blade–single row omnidirectional wheel” composite structure, which is mainly characterized by a single row of continuous switching wheels covering the outside of each rotor blade, and does not need to provide additional power when moving on the ground and walls, relying on the driving force generated by the rotor blades to drive the continuous switching wheels driven by the rotor blades. This structure can effectively combine the land movement mode, wall crawling mode, and air flight mode, which reduces the energy consumption of the robot without increasing the weight, and we design a deformation device that can realize the transformation of the three modes into each other. This paper mainly focuses on the design of the robot structure and the analysis of the movement method, and the land omnidirectional movement experiments, wall crawling experiments, and air flight experiments were, respectively, carried out, and the results show that the proposed land and air omnidirectional mobile robot has the ability to adapt to the movement of each scene, and improves the upper limit of the robot’s operation.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"46 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of a Land-Air Omnidirectional Mobile Robot\",\"authors\":\"Changlong Ye, Hongyu Wang, Suyang Yu, Xinyu Ma, Ruizhe Zhou\",\"doi\":\"10.3390/aerospace11070576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new type of omnidirectional mobile robot for land and air, which has three motion modes, combines the motion characteristics of land motion and air flight, has the ability to climb walls, and can be actively deformed to adapt to the working conditions according to the current working environment. The robot incorporates an innovative “rotor blade–single row omnidirectional wheel” composite structure, which is mainly characterized by a single row of continuous switching wheels covering the outside of each rotor blade, and does not need to provide additional power when moving on the ground and walls, relying on the driving force generated by the rotor blades to drive the continuous switching wheels driven by the rotor blades. This structure can effectively combine the land movement mode, wall crawling mode, and air flight mode, which reduces the energy consumption of the robot without increasing the weight, and we design a deformation device that can realize the transformation of the three modes into each other. This paper mainly focuses on the design of the robot structure and the analysis of the movement method, and the land omnidirectional movement experiments, wall crawling experiments, and air flight experiments were, respectively, carried out, and the results show that the proposed land and air omnidirectional mobile robot has the ability to adapt to the movement of each scene, and improves the upper limit of the robot’s operation.\",\"PeriodicalId\":505273,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"46 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11070576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/aerospace11070576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新型陆空全向移动机器人,它具有三种运动模式,兼具陆地运动和空中飞行的运动特性,具有爬墙能力,并可根据当前工作环境主动变形以适应工作条件。机器人采用了创新的 "转子叶片-单排全向轮 "复合结构,其主要特点是每个转子叶片外侧覆盖有单排连续切换轮,在地面和墙壁上运动时无需提供额外动力,依靠转子叶片产生的驱动力带动转子叶片驱动的连续切换轮。这种结构可以有效地将陆地移动模式、墙壁爬行模式和空中飞行模式结合起来,在不增加重量的情况下降低了机器人的能耗,并且我们设计了一种变形装置,可以实现三种模式的相互转换。本文主要针对机器人的结构设计和运动方式进行了分析,并分别进行了陆地全向运动实验、墙壁爬行实验和空中飞行实验,结果表明所提出的陆空全向移动机器人具有适应各场景运动的能力,提高了机器人的运行上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Implementation of a Land-Air Omnidirectional Mobile Robot
This paper proposes a new type of omnidirectional mobile robot for land and air, which has three motion modes, combines the motion characteristics of land motion and air flight, has the ability to climb walls, and can be actively deformed to adapt to the working conditions according to the current working environment. The robot incorporates an innovative “rotor blade–single row omnidirectional wheel” composite structure, which is mainly characterized by a single row of continuous switching wheels covering the outside of each rotor blade, and does not need to provide additional power when moving on the ground and walls, relying on the driving force generated by the rotor blades to drive the continuous switching wheels driven by the rotor blades. This structure can effectively combine the land movement mode, wall crawling mode, and air flight mode, which reduces the energy consumption of the robot without increasing the weight, and we design a deformation device that can realize the transformation of the three modes into each other. This paper mainly focuses on the design of the robot structure and the analysis of the movement method, and the land omnidirectional movement experiments, wall crawling experiments, and air flight experiments were, respectively, carried out, and the results show that the proposed land and air omnidirectional mobile robot has the ability to adapt to the movement of each scene, and improves the upper limit of the robot’s operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rapid and Near-Analytical Planning Method for Entry Trajectory under Time and Full-State Constraints Experimental Determination of Pitch Damping Coefficient Using Free Oscillation Method Ground-Based Characterisation of a Compact Instrument for Gamma-ray Burst Detection on a CubeSat Platform Design of Low-Cost Simulation Space Micro Debris Launch Device Design and Implementation of a Land-Air Omnidirectional Mobile Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1