{"title":"加利福尼亚水稻中蝌蚪虾(Triops longicaudatus (LeConte))的生物防治方案","authors":"Joanna B Bloese, Kevin M. Goding, Larry Godfrey","doi":"10.3390/agriculture14071136","DOIUrl":null,"url":null,"abstract":"Tadpole shrimp (Triops longicaudatus) has become a major pest for California rice farmers. Currently, management relies solely on the insecticide lambda-cyhalothrin. However, resistance to this pyrethroid was confirmed in 2016; thus, identifying an effective and practical biological control method for TPS is a priority. Field trials were conducted from 2017 to 2018 to (1) evaluate the efficacy of the predatory fish Gambusia affinis and the predatory beetles, Laccophilus maculosus (Say) and Tropisternus lateralis (Fabricius), in controlling TPS, (2) test the efficacy of several inoculation rates of Gambusia affinis at controlling TPS and (3) to explore early indicators of TPS activity and damage as monitoring tools. Both Gambusia affinis and the predatory beetle treatments were not significantly different from the commercial standard (lambda-cyhalothrin). Both four and five Gambusia per 1 m2 controlled TPS as well as lambda-cyhalothrin, and we observed that Gambusia affinis was able to reproduce in the field. Water turbidity was significantly correlated with TPS counts (R = 0.85, N = 20, p < 0.0001 (2017); R = 0.58, N = 30, p = 0.0007 (2018)). The number of dislodged seedlings was less reliably correlated with TPS count; in 2017, correlations were significant (R = 0.84, N = 20, p < 0.0001); however, in 2018, correlations were not significant (R = 0.18, N = 30, p = 0.35). With further refinement, water turbidity could play a valuable role in monitoring TPS populations.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":"66 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological Control Options for the Management of Tadpole Shrimp (Triops longicaudatus (LeConte)) in California Rice\",\"authors\":\"Joanna B Bloese, Kevin M. Goding, Larry Godfrey\",\"doi\":\"10.3390/agriculture14071136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tadpole shrimp (Triops longicaudatus) has become a major pest for California rice farmers. Currently, management relies solely on the insecticide lambda-cyhalothrin. However, resistance to this pyrethroid was confirmed in 2016; thus, identifying an effective and practical biological control method for TPS is a priority. Field trials were conducted from 2017 to 2018 to (1) evaluate the efficacy of the predatory fish Gambusia affinis and the predatory beetles, Laccophilus maculosus (Say) and Tropisternus lateralis (Fabricius), in controlling TPS, (2) test the efficacy of several inoculation rates of Gambusia affinis at controlling TPS and (3) to explore early indicators of TPS activity and damage as monitoring tools. Both Gambusia affinis and the predatory beetle treatments were not significantly different from the commercial standard (lambda-cyhalothrin). Both four and five Gambusia per 1 m2 controlled TPS as well as lambda-cyhalothrin, and we observed that Gambusia affinis was able to reproduce in the field. Water turbidity was significantly correlated with TPS counts (R = 0.85, N = 20, p < 0.0001 (2017); R = 0.58, N = 30, p = 0.0007 (2018)). The number of dislodged seedlings was less reliably correlated with TPS count; in 2017, correlations were significant (R = 0.84, N = 20, p < 0.0001); however, in 2018, correlations were not significant (R = 0.18, N = 30, p = 0.35). With further refinement, water turbidity could play a valuable role in monitoring TPS populations.\",\"PeriodicalId\":7447,\"journal\":{\"name\":\"Agriculture\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14071136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14071136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Biological Control Options for the Management of Tadpole Shrimp (Triops longicaudatus (LeConte)) in California Rice
Tadpole shrimp (Triops longicaudatus) has become a major pest for California rice farmers. Currently, management relies solely on the insecticide lambda-cyhalothrin. However, resistance to this pyrethroid was confirmed in 2016; thus, identifying an effective and practical biological control method for TPS is a priority. Field trials were conducted from 2017 to 2018 to (1) evaluate the efficacy of the predatory fish Gambusia affinis and the predatory beetles, Laccophilus maculosus (Say) and Tropisternus lateralis (Fabricius), in controlling TPS, (2) test the efficacy of several inoculation rates of Gambusia affinis at controlling TPS and (3) to explore early indicators of TPS activity and damage as monitoring tools. Both Gambusia affinis and the predatory beetle treatments were not significantly different from the commercial standard (lambda-cyhalothrin). Both four and five Gambusia per 1 m2 controlled TPS as well as lambda-cyhalothrin, and we observed that Gambusia affinis was able to reproduce in the field. Water turbidity was significantly correlated with TPS counts (R = 0.85, N = 20, p < 0.0001 (2017); R = 0.58, N = 30, p = 0.0007 (2018)). The number of dislodged seedlings was less reliably correlated with TPS count; in 2017, correlations were significant (R = 0.84, N = 20, p < 0.0001); however, in 2018, correlations were not significant (R = 0.18, N = 30, p = 0.35). With further refinement, water turbidity could play a valuable role in monitoring TPS populations.
AgricultureAgricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍:
The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.