利用长规传感器分析车辆荷载动态响应,检测桥梁损坏情况

IF 3.5 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal of Structural Integrity Pub Date : 2024-07-12 DOI:10.1108/ijsi-04-2024-0059
M. Saifeldeen, Ahmed Monier, N. Fouad
{"title":"利用长规传感器分析车辆荷载动态响应,检测桥梁损坏情况","authors":"M. Saifeldeen, Ahmed Monier, N. Fouad","doi":"10.1108/ijsi-04-2024-0059","DOIUrl":null,"url":null,"abstract":"PurposeThis paper presents a novel method for identifying damage in reinforced concrete (RC) bridges, utilizing macro-strain data from distributed long-gauge sensors installed on the concrete surface.Design/methodology/approachThe method relies on the principle that heavy vehicles induce larger dynamic vibrations, leading to increased strain and crack formation compared to lighter vehicles. By comparing the absolute macro-strain ratio (AMSR) of a reference sensor with a network of distributed sensors, damage locations can be effectively pinpointed from a single data collection session. Finite-element modeling was employed to validate the method's efficacy, demonstrating that the AMSR ratio increases significantly in the presence of cracks. Experimental validation was conducted on a real-world bridge in Japan, confirming the method's reliability under normal traffic conditions.FindingsThis approach offers a practical and efficient means of detecting bridge damage, potentially enhancing the safety and longevity of infrastructure systems.Originality/valueOriginal research paper.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of bridge damage through analysis of dynamic response to vehicular loads utilizing long-gauge sensors\",\"authors\":\"M. Saifeldeen, Ahmed Monier, N. Fouad\",\"doi\":\"10.1108/ijsi-04-2024-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper presents a novel method for identifying damage in reinforced concrete (RC) bridges, utilizing macro-strain data from distributed long-gauge sensors installed on the concrete surface.Design/methodology/approachThe method relies on the principle that heavy vehicles induce larger dynamic vibrations, leading to increased strain and crack formation compared to lighter vehicles. By comparing the absolute macro-strain ratio (AMSR) of a reference sensor with a network of distributed sensors, damage locations can be effectively pinpointed from a single data collection session. Finite-element modeling was employed to validate the method's efficacy, demonstrating that the AMSR ratio increases significantly in the presence of cracks. Experimental validation was conducted on a real-world bridge in Japan, confirming the method's reliability under normal traffic conditions.FindingsThis approach offers a practical and efficient means of detecting bridge damage, potentially enhancing the safety and longevity of infrastructure systems.Originality/valueOriginal research paper.\",\"PeriodicalId\":45359,\"journal\":{\"name\":\"International Journal of Structural Integrity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijsi-04-2024-0059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-04-2024-0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的 本文介绍了一种利用安装在混凝土表面的分布式长规传感器的宏观应变数据来识别钢筋混凝土 (RC) 桥梁损坏情况的新方法。通过比较参考传感器与分布式传感器网络的绝对宏观应变比 (AMSR),可从单次数据采集中有效确定损坏位置。有限元建模被用来验证该方法的有效性,证明在出现裂缝时,绝对宏观应变比会显著增加。在日本的一座实际桥梁上进行了实验验证,证实了该方法在正常交通条件下的可靠性。研究结果该方法提供了一种检测桥梁损坏的实用而高效的方法,有可能提高基础设施系统的安全性和使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of bridge damage through analysis of dynamic response to vehicular loads utilizing long-gauge sensors
PurposeThis paper presents a novel method for identifying damage in reinforced concrete (RC) bridges, utilizing macro-strain data from distributed long-gauge sensors installed on the concrete surface.Design/methodology/approachThe method relies on the principle that heavy vehicles induce larger dynamic vibrations, leading to increased strain and crack formation compared to lighter vehicles. By comparing the absolute macro-strain ratio (AMSR) of a reference sensor with a network of distributed sensors, damage locations can be effectively pinpointed from a single data collection session. Finite-element modeling was employed to validate the method's efficacy, demonstrating that the AMSR ratio increases significantly in the presence of cracks. Experimental validation was conducted on a real-world bridge in Japan, confirming the method's reliability under normal traffic conditions.FindingsThis approach offers a practical and efficient means of detecting bridge damage, potentially enhancing the safety and longevity of infrastructure systems.Originality/valueOriginal research paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Structural Integrity
International Journal of Structural Integrity ENGINEERING, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
14.80%
发文量
42
期刊最新文献
Study on crack law of shield segment under load variation based on XFEM Study on crack law of shield segment under load variation based on XFEM Research of criteria for analyzing the load-bearing capacity of buildings in areas of technogenic impact caused by mining operations Detection of bridge damage through analysis of dynamic response to vehicular loads utilizing long-gauge sensors Ultimate resistance and fatigue performance predictions of woven-based fiber reinforced polymers using a computational homogenization method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1