Marieke Stapf, Vladislav Komenko, Johanna Phuong Nong, Jörg Adam, Franz Selbmann, Andrey Kravchenko, Martina Bremer, Steffen Fischer, Klaus Knobloch, Yvonne Joseph
{"title":"木质素水凝胶作为基于悬浮栅极场效应晶体管的新型微型化学传感平台的应用案例","authors":"Marieke Stapf, Vladislav Komenko, Johanna Phuong Nong, Jörg Adam, Franz Selbmann, Andrey Kravchenko, Martina Bremer, Steffen Fischer, Klaus Knobloch, Yvonne Joseph","doi":"10.1002/adsr.202400040","DOIUrl":null,"url":null,"abstract":"<p>Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400040","citationCount":"0","resultStr":"{\"title\":\"Lignin Hydrogels as a Use Case for a New Miniaturized Chemical Sensing Platform Based on Suspended Gate Field Effect Transistors\",\"authors\":\"Marieke Stapf, Vladislav Komenko, Johanna Phuong Nong, Jörg Adam, Franz Selbmann, Andrey Kravchenko, Martina Bremer, Steffen Fischer, Klaus Knobloch, Yvonne Joseph\",\"doi\":\"10.1002/adsr.202400040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"3 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lignin Hydrogels as a Use Case for a New Miniaturized Chemical Sensing Platform Based on Suspended Gate Field Effect Transistors
Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.