{"title":"利用地理信息系统和遥感工具评估南地中海盆地的地下水补给潜力:喀斯特含水层 Khalled- Teboursouk 盆地案例","authors":"Yosra Ayadi, Naziha Mokadem, Faten Khelifi, Rayen Khalil, Latifa Dhawadi, Younes Hamed","doi":"10.1007/s12518-024-00573-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the Khaled-Teboursouk basin (Southern Mediterranean Basin), karstic aquifers are the main sources of drinking and irrigation water. They play a crucial role in the socio-economic development of the region. Therefore, the estimation of groundwater recharge is necessary for a good management of water resources, while considering the impacts of climate change. The present study utilizes the application of APLIS method integrated with Geographic Information System (GIS) as a remote sensing technique for geospatial analysis to explore groundwater recharge areas along Khalled-Teboursouk basin, expressed as a percentage of precipitation combined with numerous parameters. The morphology of earth surface features such as Altitude (A), Slope (P), Lithology (L), infiltration (I), and Soil (S) influence the groundwater recharge rate in carbonate aquifers, from the infiltration of rainfall in aquifers in either direct or indirect way. The results revealed that 60–80% of precipitation is identified as high potential for groundwater recharge and it is associated with karstified limestones of Eocene lower age. The gentle slope areas in the Middle-East and Central parts have been moderate potential for groundwater recharge 40–60% of precipitation and they are associated with karstified limestone of Campanian-Maastrichtian age (Abiod Fm.). Hilly terrains with low and very low recharge are the most represented for groundwater recharge processes. They are associated with areas of non-karstified rocks and Quaternary deposits. The dominant water type of the groundwater in this area is Ca–Mg–Cl–SO<sub>4</sub> water type. The Total Dissolved Solids (TDS) of these waters (0.37 to 3.58 g/l) are slow in the recharge area and high in the discharge area. This is caused by rapid circulation of water from the recharge areas to the discharge points. The aquifers have been recharged by rainfall originating from a mixture of Atlantic and Mediterranean vapor masses. The isotope analyses, δ<sup>18</sup>O and δ<sup>2</sup>H ranged from − 6.8 to -5.3‰ (vs. SMOW) and from − 42 to -4‰ (vs. SMOW) respectively, confirm the recent recharge of these carbonate aquifers.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":"16 3","pages":"677 - 693"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groundwater potential recharge assessment in Southern Mediterranean basin using GIS and remote sensing tools: case of Khalled- Teboursouk basin, karst aquifer\",\"authors\":\"Yosra Ayadi, Naziha Mokadem, Faten Khelifi, Rayen Khalil, Latifa Dhawadi, Younes Hamed\",\"doi\":\"10.1007/s12518-024-00573-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the Khaled-Teboursouk basin (Southern Mediterranean Basin), karstic aquifers are the main sources of drinking and irrigation water. They play a crucial role in the socio-economic development of the region. Therefore, the estimation of groundwater recharge is necessary for a good management of water resources, while considering the impacts of climate change. The present study utilizes the application of APLIS method integrated with Geographic Information System (GIS) as a remote sensing technique for geospatial analysis to explore groundwater recharge areas along Khalled-Teboursouk basin, expressed as a percentage of precipitation combined with numerous parameters. The morphology of earth surface features such as Altitude (A), Slope (P), Lithology (L), infiltration (I), and Soil (S) influence the groundwater recharge rate in carbonate aquifers, from the infiltration of rainfall in aquifers in either direct or indirect way. The results revealed that 60–80% of precipitation is identified as high potential for groundwater recharge and it is associated with karstified limestones of Eocene lower age. The gentle slope areas in the Middle-East and Central parts have been moderate potential for groundwater recharge 40–60% of precipitation and they are associated with karstified limestone of Campanian-Maastrichtian age (Abiod Fm.). Hilly terrains with low and very low recharge are the most represented for groundwater recharge processes. They are associated with areas of non-karstified rocks and Quaternary deposits. The dominant water type of the groundwater in this area is Ca–Mg–Cl–SO<sub>4</sub> water type. The Total Dissolved Solids (TDS) of these waters (0.37 to 3.58 g/l) are slow in the recharge area and high in the discharge area. This is caused by rapid circulation of water from the recharge areas to the discharge points. The aquifers have been recharged by rainfall originating from a mixture of Atlantic and Mediterranean vapor masses. The isotope analyses, δ<sup>18</sup>O and δ<sup>2</sup>H ranged from − 6.8 to -5.3‰ (vs. SMOW) and from − 42 to -4‰ (vs. SMOW) respectively, confirm the recent recharge of these carbonate aquifers.</p></div>\",\"PeriodicalId\":46286,\"journal\":{\"name\":\"Applied Geomatics\",\"volume\":\"16 3\",\"pages\":\"677 - 693\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12518-024-00573-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00573-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Groundwater potential recharge assessment in Southern Mediterranean basin using GIS and remote sensing tools: case of Khalled- Teboursouk basin, karst aquifer
In the Khaled-Teboursouk basin (Southern Mediterranean Basin), karstic aquifers are the main sources of drinking and irrigation water. They play a crucial role in the socio-economic development of the region. Therefore, the estimation of groundwater recharge is necessary for a good management of water resources, while considering the impacts of climate change. The present study utilizes the application of APLIS method integrated with Geographic Information System (GIS) as a remote sensing technique for geospatial analysis to explore groundwater recharge areas along Khalled-Teboursouk basin, expressed as a percentage of precipitation combined with numerous parameters. The morphology of earth surface features such as Altitude (A), Slope (P), Lithology (L), infiltration (I), and Soil (S) influence the groundwater recharge rate in carbonate aquifers, from the infiltration of rainfall in aquifers in either direct or indirect way. The results revealed that 60–80% of precipitation is identified as high potential for groundwater recharge and it is associated with karstified limestones of Eocene lower age. The gentle slope areas in the Middle-East and Central parts have been moderate potential for groundwater recharge 40–60% of precipitation and they are associated with karstified limestone of Campanian-Maastrichtian age (Abiod Fm.). Hilly terrains with low and very low recharge are the most represented for groundwater recharge processes. They are associated with areas of non-karstified rocks and Quaternary deposits. The dominant water type of the groundwater in this area is Ca–Mg–Cl–SO4 water type. The Total Dissolved Solids (TDS) of these waters (0.37 to 3.58 g/l) are slow in the recharge area and high in the discharge area. This is caused by rapid circulation of water from the recharge areas to the discharge points. The aquifers have been recharged by rainfall originating from a mixture of Atlantic and Mediterranean vapor masses. The isotope analyses, δ18O and δ2H ranged from − 6.8 to -5.3‰ (vs. SMOW) and from − 42 to -4‰ (vs. SMOW) respectively, confirm the recent recharge of these carbonate aquifers.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements