基于仿生和生物兼容有机配体的金属复合物防治利什曼病感染的最新进展:技术现状与替代方案

IF 3.1 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Inorganics Pub Date : 2024-07-12 DOI:10.3390/inorganics12070190
Sandra Jimenez-Falcao, J. M. Méndez-Arriaga
{"title":"基于仿生和生物兼容有机配体的金属复合物防治利什曼病感染的最新进展:技术现状与替代方案","authors":"Sandra Jimenez-Falcao, J. M. Méndez-Arriaga","doi":"10.3390/inorganics12070190","DOIUrl":null,"url":null,"abstract":"Leishmaniasis is a complex disease present in a variety of manifestations listed by the World Health Organization (WHO) as one of the neglected diseases with a worse prognosis if not treated. Medicinal inorganic chemistry has provided a variety of drugs based on metal–organic complexes synthesized with different metal centers and organic ligands to fight against a great number of parasite maladies and specifically Leishmaniasis. Taking advantage of the natural properties that many metals present for biotechnological purposes, nanotechnology has offered, in recent years, a new approach consisting on the application of metal nanoparticles to treat a great number of parasitic diseases, as a drug vehicle or as a treatment themselves. The aim of this review is to gather the most widely used metal complexes and metallic nanoparticles and the most recent strategies proposed as antileishmanial agents.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Metal Complexes Based on Biomimetic and Biocompatible Organic Ligands against Leishmaniasis Infections: State of the Art and Alternatives\",\"authors\":\"Sandra Jimenez-Falcao, J. M. Méndez-Arriaga\",\"doi\":\"10.3390/inorganics12070190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leishmaniasis is a complex disease present in a variety of manifestations listed by the World Health Organization (WHO) as one of the neglected diseases with a worse prognosis if not treated. Medicinal inorganic chemistry has provided a variety of drugs based on metal–organic complexes synthesized with different metal centers and organic ligands to fight against a great number of parasite maladies and specifically Leishmaniasis. Taking advantage of the natural properties that many metals present for biotechnological purposes, nanotechnology has offered, in recent years, a new approach consisting on the application of metal nanoparticles to treat a great number of parasitic diseases, as a drug vehicle or as a treatment themselves. The aim of this review is to gather the most widely used metal complexes and metallic nanoparticles and the most recent strategies proposed as antileishmanial agents.\",\"PeriodicalId\":13572,\"journal\":{\"name\":\"Inorganics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics12070190\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12070190","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

利什曼病是一种表现多种多样的复杂疾病,被世界卫生组织(WHO)列为被忽视的疾病之一,如不治疗,预后会更糟糕。药用无机化学提供了多种以不同金属中心和有机配体合成的金属有机复合物为基础的药物,用于防治大量寄生虫疾病,特别是利什曼病。近年来,纳米技术利用许多金属在生物技术方面的天然特性,提供了一种新的方法,即应用金属纳米颗粒作为药物载体或作为治疗手段来治疗大量寄生虫病。本综述旨在收集最广泛使用的金属复合物和金属纳米粒子,以及作为抗利什曼病药物提出的最新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Advances in Metal Complexes Based on Biomimetic and Biocompatible Organic Ligands against Leishmaniasis Infections: State of the Art and Alternatives
Leishmaniasis is a complex disease present in a variety of manifestations listed by the World Health Organization (WHO) as one of the neglected diseases with a worse prognosis if not treated. Medicinal inorganic chemistry has provided a variety of drugs based on metal–organic complexes synthesized with different metal centers and organic ligands to fight against a great number of parasite maladies and specifically Leishmaniasis. Taking advantage of the natural properties that many metals present for biotechnological purposes, nanotechnology has offered, in recent years, a new approach consisting on the application of metal nanoparticles to treat a great number of parasitic diseases, as a drug vehicle or as a treatment themselves. The aim of this review is to gather the most widely used metal complexes and metallic nanoparticles and the most recent strategies proposed as antileishmanial agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganics
Inorganics Chemistry-Inorganic Chemistry
CiteScore
2.80
自引率
10.30%
发文量
193
审稿时长
6 weeks
期刊介绍: Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD
期刊最新文献
Iron–Sulfur Clusters: Assembly and Biological Roles Improving Charge Transport in Perovskite Solar Cells Using Solvent Additive Technique 2,1,3-Benzoselenadiazole as Mono- and Bidentate N-Donor for Heteroleptic Cu(I) Complexes: Synthesis, Characterization and Photophysical Properties Electrochemically Active Copper Complexes with Pyridine-Alkoxide Ligands Exploring the Anti-Corrosion, Photocatalytic, and Adsorptive Functionalities of Biogenically Synthesized Zinc Oxide Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1