基于粒子群优化算法的航天器反侦察游戏

Caihong Dong, Mengping Zhu, Jitang Guo, Xinlong Chen
{"title":"基于粒子群优化算法的航天器反侦察游戏","authors":"Caihong Dong,&nbsp;Mengping Zhu,&nbsp;Jitang Guo,&nbsp;Xinlong Chen","doi":"10.1007/s42423-024-00160-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an optimization strategy using competitive particle swarm algorithm for the anti-reconnaissance problem in the near-range game scenario of spacecraft. Firstly, the constraint analysis is carried out for the anti-reconnaissance game scenario, and game model are designed. Then, an adaptive sliding mode pointing controller is designed, and the effectiveness of the controller is verified through simulation examples. For the survival game, the two-point boundary value problem is derived. To facilitate the solution, it is further transformed into a single-objective optimization problem, and solved by using competitive particle swarm optimization algorithm. The simulation results verify the effectiveness of the solution method.</p></div>","PeriodicalId":100039,"journal":{"name":"Advances in Astronautics Science and Technology","volume":"7 2","pages":"121 - 131"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spacecraft Anti-Reconnaissance Game Based on Particle Swarm Optimization Algorithm\",\"authors\":\"Caihong Dong,&nbsp;Mengping Zhu,&nbsp;Jitang Guo,&nbsp;Xinlong Chen\",\"doi\":\"10.1007/s42423-024-00160-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes an optimization strategy using competitive particle swarm algorithm for the anti-reconnaissance problem in the near-range game scenario of spacecraft. Firstly, the constraint analysis is carried out for the anti-reconnaissance game scenario, and game model are designed. Then, an adaptive sliding mode pointing controller is designed, and the effectiveness of the controller is verified through simulation examples. For the survival game, the two-point boundary value problem is derived. To facilitate the solution, it is further transformed into a single-objective optimization problem, and solved by using competitive particle swarm optimization algorithm. The simulation results verify the effectiveness of the solution method.</p></div>\",\"PeriodicalId\":100039,\"journal\":{\"name\":\"Advances in Astronautics Science and Technology\",\"volume\":\"7 2\",\"pages\":\"121 - 131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronautics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42423-024-00160-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronautics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42423-024-00160-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对航天器近程博弈场景中的反侦察问题,提出了一种采用竞争粒子群算法的优化策略。首先,对反侦察博弈场景进行约束分析,并设计博弈模型。然后,设计了自适应滑模指向控制器,并通过仿真实例验证了控制器的有效性。针对生存博弈,推导出了两点边界值问题。为便于求解,进一步将其转化为单目标优化问题,并使用竞争性粒子群优化算法进行求解。仿真结果验证了求解方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spacecraft Anti-Reconnaissance Game Based on Particle Swarm Optimization Algorithm

This paper proposes an optimization strategy using competitive particle swarm algorithm for the anti-reconnaissance problem in the near-range game scenario of spacecraft. Firstly, the constraint analysis is carried out for the anti-reconnaissance game scenario, and game model are designed. Then, an adaptive sliding mode pointing controller is designed, and the effectiveness of the controller is verified through simulation examples. For the survival game, the two-point boundary value problem is derived. To facilitate the solution, it is further transformed into a single-objective optimization problem, and solved by using competitive particle swarm optimization algorithm. The simulation results verify the effectiveness of the solution method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research on Overload Characteristics of Projectile Penetrating Layered Protective Structures with High-Velocity Video Information-Based Liquid Rocket Engine Fault Simulation Test Method under Complex Environment Preface Game Strategies Against High Orbit Surveillance Satellites Orbital Rendezvous Guidance Strategy for Time-Sensitive Missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1